
acceleratehs.org

AccelerateHS

Accelerate
High Performance Simulations in Haskell

Gabriele Keller, Utrecht University
Trevor McDonell (UU) Josh Meredith

Pe
rf

or
m

an
ce

Effort

🍰 expected

actual

desired

Accelerate

• Accelerate supports array based, regular data parallelism

• Aim: easier to write, while being as fast/faster than hand coded CUDA/
OpenCL

- multi-dimensional arrays of fixed sized element types

- no nested arrays

- element type user extensible

ray tracing
stable fluid flow

Mandelbrot fractal

n-body gravitational simulation

Array/matrix
computations

Everything
else

Accelerate

but, we working
on this!

Accelerate
An deeply embedded language for data-parallel arrays

Haskell/Accelerate
program

Target code

Compile and run on
the CPU/GPU

(LLVM)

Copy result back to Haskell

Reify and optimise
Accelerate program

dotp :: Num a
 => [a] -> [a] -> a
dotp xs ys = foldl (+) 0 (zipWith (*) xs ys)

Example: dot product

Accelerate

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Collective operations which compile to parallel code

import Data.Array.Accelerate
dotp :: (Elt a, Num a)
 => Acc (Vector a)
 -> Acc (Vector a)
 -> Acc (Scalar a)

Accelerate

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Collective operations compiled to parallel code

-> ->

language of collective,
parallel operations

import Data.Array.Accelerate
dotp :: (Elt a, Num a)
 => Acc (Vector a)
 -> Acc (Vector a)
 -> Acc (Scalar a)

-> ->[….] [….] .

Accelerate
Collective operations which compile to parallel code

fold :: (Shape sh, Elt e)
 => (Exp e -> Exp e -> Exp e)
 -> Exp e
 -> Acc (Array (sh :. Int) e)
 -> Acc (Array sh e)

language of sequential,
scalar expressions

language of collective,
parallel operations rank-polymorphic

To enforce hardware restrictions,
 nested parallel computation can't be expressed

almost

fold (+) 0

Accelerate
Collective operations which compile to parallel code

shape sh of the form Z :. Int :. Int :. …

type DIM0 = Z
type Scalar a = Array DIM0 a

type DIM1 = DIM0 :. Int
type Vector a = Array DIM1 a

fold :: (Shape sh, Elt e)
 => (Exp e -> Exp e -> Exp e)
 -> Exp e
 -> Acc (Array (sh :. Int) e)
 -> Acc (Array sh e)

Executing an Accelerate Program

run :: Arrays a => Acc a -> a

import Data.Array.Accelerate
import Data.Array.Accelerate.LLVM.Native — CPU

vec1, vec2 :: Acc (Array DIM1 Float)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

main =
 putStrLn $ show $ run (dotp vec1 vec2)

Executing an Accelerate Program

run1 :: Arrays a => (Acc a -> Acc b) -> a -> b

• In general, you don’t want to the system to generate new code for every input

vec1, vec2 :: Array DIM1 Float

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

main =
 putStrLn $ show $ run1 (uncurry dotp) (vec1, vec2)

Lifting values into the language

• lifting (non-overloaded) values to the expression language and back

- Lift e => lift :: e -> Exp (Plain e)

- Unlift e => unlift :: Exp e -> e

• tedious, often requires type annotations to resolve overloading, confusing
errors

Plain (Exp Int, Int) ~ (Int,Int) ~ Plain (Int, Exp Int)

Supported data types - the Elt class

• GPUs are efficient processing arrays of elementary type

• not so much for aggregate types, pointers

• similarly CPU when using SIMD vector instructions

• set of types LLVM supports is fixed

• We map the user-friendly surface types to efficient
representations

Supported data types - the Elt class

• Using type families(i.e., functions from type to type)

• Extensible: user-defined types need instances for EltRepr

Supported data types - pattern synonyms

• Predefined pattern synonyms T2, T3, … to match tuples of
different arity:

Supported data types

LULESH
Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics

LULESH

• Implementation

- reference CUDA implementation: 3000 loc

- reference OpenMP implementation: 2400 loc

- Accelerate: 1200 loc

• Performance

- reference CUDA implementation, hand optimised: 5.2s

- Accelerate (GPU): 4.1s

- reference OpenMP, hand optimised: 64s

- Accelerate (CPU): 38s

Simulating the formation of spatial
patterns in ecosystems

• With Johan van de Koppel, Royal
Netherlands Institute for Sea Research
(NIOZ)

• Formation of structures like mussel
beds, salt marshes, arid bush land
follows certain computational patterns

• Problems:

- Simulation of these processes is
extremely time consuming

- Writing the simulation code is painful

freeaussiestock.comCreative Commons Attribution-Share Alike 2.0 Generic, John Tushin Creative Commons CC0 1.0 Universal Public Domain Dedication.

https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/2.0/deed.en
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Simulating the formation of spatial
patterns in ecosystems
• Combination of system like fluid-flow simulation and Turing* pattern

computations

*The Chemical Basis of Morphogenesis

Stencil (convolution matrix) computations
f f f

Stencil computations - boundaries

clamp

?

?

?
generate :: (Shape sh, Elt a)
 => Exp sh
 -> (Exp sh -> Exp a)
 -> Acc (Array sh a)

stencil :: (Stencil sh a stencil, Elt b)
 => (stencil -> Exp b)
 -> Boundary (Array sh a)
 -> Acc (Array sh a)
 -> Acc (Array sh b)

https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/Data-Array-Accelerate.html#t:Shape
https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/Data-Array-Accelerate.html#t:Elt
https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/Data-Array-Accelerate.html#t:Exp
https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/Data-Array-Accelerate.html#t:Acc
https://hackage.haskell.org/package/accelerate-1.2.0.1/docs/Data-Array-Accelerate.html#t:Array

OpenCL Accelerate

simulate :: Stencil3x3 Float-> Exp Float
simulate ((_, top, _),
 (left, curr, right),
 (_, bot, _)) =
top + left + curr + right + bot

new_matrix
 = stencil simulate clamp matrix

f

=
+

+
+ +

GeForce GTX 1080 Ti

317.5s

41.3s

Challenges and next steps

• Our boundary abstraction not suitable for these applications:

- set of predefined patterns where to source the arguments for stencil
operation from (clap, wrap,…)

- programmer can define their own pattern

- but: not possible to apply different operation at the boundaries

• has to be fixed in separate step

- impacts performance as well as code conciseness/readability

• Even efficient simulations take long - multi-GPU, other architectures

• Some support for irregular computations is necessary to increase efficiency

• Some simulations require are based on very large convolution matrices

