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First few decades of deep learning

 

name: "AlexNet"

layer {

 name: "data"

 type: "Input"

 top: "data"

 input_param { shape: … }

}

layer {

 name: "conv1"

 ...

 }

layer {

 name: “relu1”

 ...

}

Models programmed with text files, configuration 
scripts and built-in procedures (e.g. stochastic gradient 
descent variants)
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The era of differentiable programming

● Custom optimizers and second-order optimization methods (e.g. K-FAC) 
● Optimization through traditional algorithms, e.g. parsing and dynamic 

programming 
● Differentiation for custom loss functions, e.g. Conditional Random Fields 
● Differentiable interpreters, neural Turing machines
● Data dependent control and data flow, e.g. graph neural networks 
● Custom gradient checkpointing, reinforcement learning, …

AD support in TensorFlow, PyTorch, Julia, Jax, DiffSharp, and older systems like 
Stalingrad, Vlad, Tapenade, and more

https://arxiv.org/pdf/1503.05671.pdf
https://arxiv.org/abs/1505.08075
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://arxiv.org/pdf/1611.02109.pdf
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1511.05493
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Swift for Tensorflow: language support for AD

for epoch in 1...epochCount {

   for i in 0 ..< Int(labels.shape[0]) / batchSize {

       let x = minibatch(in: images, at: i)

       let y = minibatch(in: numericLabels, at: i)

       // Compute the gradient with respect to the model.

       let 𝛁model = classifier.gradient { classifier -> Tensor<Float> in
           let ŷ = classifier(x)

           let loss = softmaxCrossEntropy(logits: ŷ, labels: y)

           return loss }

       optimizer.update(&classifier.allDifferentiableVariables, along: 𝛁model)
   }

www.tensorflow.org/swift
https://github.com/apple/swift/tree/tensorflow

Differentiation operator on closure:
(fun classifier => … return loss) 

http://www.tensorflow.org/swift
https://github.com/apple/swift/tree/tensorflow
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The essence of AD in Swift for Tensorflow (S4TF)

An ahead-of-time (compile-time) symbolic AD phase

● Every differentiable function definition:  f(x1:T1,...xn:Tn) : R of type (T1,..,Tn) -> R is 
compiled to a data structure f of type (T1,...Tn) => R, a “bundle”

● T1,...,Tn => R   is just:
●

T1,...,Tn -> (R,  { derivative : (T1.TangentVector,..., 
                                               Tn.TangentVector) -∘ R.TangentVector, 
                         pullback : R.TangentVector -∘ 
                                      (T1.TangentVector,...,Tn.TangentVector })

● Bundle f can be (1) applied, or (2) passed in to other functions, or even (3) partially applied

Jacobian-Vector product 

Vector-Jacobian product 

-∘: linear function
f(0) = 0
f(x1+x2) = f(x1)+f(x2)

∇ NOT an operator on syntax 
trees! 
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(Co)-Tangent Spaces

T1,...,Tn => R   is just:

T1,...,Tn -> (R,  { derivative : (T1.TangentVector,..., 
                                           Tn.TangentVector) -> R.TangentVector, 
                         pullback : R.TangentVector -> 
                                      (T1.TangentVector,...,Tn.TangentVector) } )

What is T.TangentVector?
● In S4TF every differentiable type T defines a space of perturbations through an associated type in a 

Swift Differentiable protocol (a bit like a Haskell type class)
● In math (and in some interpretations of differentiation for higher-order functions) there’s also an 

separate notion of a CoTangentVector, but (like Swift) we will not be making the distinction. 
● Just for brevity of notation we will use a G[.] type operator to denote the space of perturbations:

T1,...,Tn -> (R,  { derivative : (G[T1],..., G[Tn]) -> G[R], 
                         pullback : G[R] -> (G[T1],...,G[Tn]) } )
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(Co)-Tangent Spaces continued

T1,...,Tn => R defined as:
T1,...,Tn -> (R, { derivative : (G[T1],..., G[Tn]) -> G[R], 
                   pullback : G[R] -> (G[T1],...,G[Tn]) } )

G[Real] = Real 
zero = … 
sum = … 

G[(T1,T2)] = (G[T1], G[T2])
zero = …
sum = … 

G[Tensor] = Tensor
zero = … 
sum = …

For first-order types G[T] = T!

Hence Conal Elliott here dispenses with G[.]:

D :: (A -> B) -> (A -> (B, A -∘ B))

… Is Conal right? … 

https://arxiv.org/abs/1804.00746
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Recap: Reverse-mode AD in one slide
(we will focus for the rest of the talk on reverse mode AD)

// Let f be a function bundle:
f : (Float,Float) => Float

// Let’s try to differentiate:
func g(x:Float, y:Float) : Float { 
  let (y1,y2) = dup(y);
  let v       = f(x,y1);
  let r       = f(v,y2);
  return r;
}

// Recall (just doing reverse-mode AD for simplicity):
f :(Float,Float) -> (Float, G[Float] -> (G[Float],G[Float]))

func g(x:Float, y:Float) {
  let ((y1,y2),pb_dup) = dup(y);
  let (v, pb_f1)       = f(x,y1);
  let (r, pb_f2)       = f(v,y2);
  return (r, gt in {
     let (gv,gy2) = pb_f2(gt)
     let (gx,gy1) = pb_f1(gv)
     let gy       = pb_dup(gy1, gy2)
     return (gx, gy); 
     })
}
// Hence we can produce g :: (Float,Float) => Float

● Progressively convert every f(x1..xn) of a differentiable function f to f(x1..xn)
● Compose pullbacks in the opposite direction

func dup(x) { return (x,x); }
func dup(x) { return ((x,x), (g1,g2) in g1+g2) }

Note: x in body is just Swift 
notation for \x -> body
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Enter partial applications
Higher-order functions are an essential part of general purpose programming languages

func f(x : Tensor) : Tensor -> Tensor { 
  return (y in x*y + x) 
}
================================================
⇒ in SIL: 
================================================
func clos_1(y x : Tensor) : Tensor { 
 return (x*y + x);
func f(x : Tensor) : Tensor -> Tensor {
 return papply(clos_1,x);
}

struct Model { 
   Tensor w;
   func call(x:Tensor):Tensor { return (x*w); }
}
… use site … 
mnist.call(inputs); 

================================================
⇒ in SIL:
================================================
func call_1(x: Tensor, self : Model) : Tensor {
    return (x * self.w); 
}
… use site … 
h = papply(call_1,mnist)
r = h(inputs)

papply : ((T1..Tn,S1..Sn) -> R, S1..Sn) -> (T1..Tn) -> R

If we have built somehow a bundle for clos_1 then we 
want “f” to return a bundle for the partial application!

If we have built somehow a bundle for call_1 
then we want papply(call_1,mnist) to 
return a bundle for the partial application!



Modular AD with higher order functions (WG2.8)

Need: a differentiable partial application

func f(x : Tensor) : Tensor -> Tensor { 
  return (y in x*y + x)
}
================================================
⇒ in SIL: 
================================================
// clos_1 : (Tensor,Tensor) => Tensor
func clos_1(y x : Tensor) : Tensor { 
  return (x*y + x);
}
// f : Tensor => Tensor => Tensor
func f(x : Tensor) : Tensor => Tensor { 
  papply(clos_1,x) 
}

struct Model { 
   Tensor w;
   func call(x:Tensor) : Tensor { return (x*w);}
}
… use site … 
mnist.call(inputs); 

================================================
⇒ in SIL:
================================================
// call_1 : (Tensor,Tensor) => Tensor
func call_1(x: Tensor, self : Model) : Tensor { 
    return (x * self.w);
}
… use site … 
h = papply(call_1,mnist) : Tensor => Tensor
r = h(inputs)

papply : ((T1..Tn,S1..Sn) => R, S1..Sn) => (T1..Tn) => R
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Higher-order arguments equally important

func f(x : Tensor, xs : Array Tensor) : Array Tensor { 
  let g = y in { x*y + x }
  return Array.map(g, xs)
}
================================================
⇒ in SIL: 
================================================
// clos_1 : (Tensor,Tensor) => Tensor
func clos_1(y x : Tensor) : Tensor { return (x*y + x); }
func f(x : Tensor, xs : Array<Tensor>) : Array<Tensor> {
  g = papply(clos_1,x);
  return Array.map(g,xs);
}
// Must have created bundle:
Array.map : (Tensor => Tensor, Array<Tensor>) => Array<Tensor>

G[(T1..Tn) => S] = ?
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A differentiable papply (aka: curry)
NOTE: switching notation to Haskell, same concepts

curry :: ((T,S) => R) -> (T => (S => R))
curry f = new_f
  where 
    new_f :: T -> (S => R, G[S=>R] -> G[T])
    new_f t = 
       let new_g :: S -> (R, G[R] -> G[S])
           new_g s = 
              let (r,pullback) = f(t,s)
              in (r, \gr -> snd (pullback gr))
           new_pb :: G[S=>R] -> G[T]
           new_pb gsr = ???????

● Need to produce a G[T]
● Hence must invoke f’s pullback somehow (of type G[R] => 

(G[T],G[S])
● Hence must “cook up” a G[R]
● … but also an actual S to get to the pullback -- we only have a 

(t : T) in scope, but nothing of type S!

First attempt: 
G[S => R] = (S, G[R]) 
new_pb (s,gr) = fst (snd (f(t,s)) gr)

Does this work*?
 

(*) and BTW what does “work” mean??
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A differentiable papply (aka: curry)
A failed attempt

curry :: ((T,S) => R) -> (T => (S => R))
curry f = new_f
  where 
    new_f :: T -> (S => R, G[S=>R] -> G[T])
    new_f t = 
       let new_g :: S -> (R, G[R] -> G[S])
           new_g s = 
              let (r,pullback) = f(t,s)
              in (r, \gr -> snd (pullback gr))
           new_pb :: G[S=>R] -> G[T]
           new_pb gsr = ???????

First attempt: 
G[S => R] = (S, G[R]) 
new_pb (s,gr) = fst (snd (f(t,s)) gr)

pi_left :: (T,S) => T
pi_left (t,s) = (t, \(g : G[T]) -> (g,zero)

fanout :: T => (T, T)
fanout t = ((t,t), \(g1,g2) -> (sum g1 g2)

We must be able to define 0 and (+) on G[T], for any T, 
including function types: S=>R.

zero :: (S, G[R])
zero = … ??? …   // No way we can define this!

sum :: (S, G[R]) -> (S,G[R]) -> (S, G[R])
sum = … ??? …  // No way we can define this!
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A differentiable papply (aka: curry)
Refining the failed attempt

curry :: ((T,S) => R) -> (T => (S => R))
curry f = new_f
  where 
    new_f :: T -> (S => R, G[S=>R] -> G[T])
    new_f t = 
       let new_g :: S -> (R, G[R] -> G[S])
           new_g s = 
              let (r,pullback) = f(t,s)
              in (r, \gr -> snd (pullback gr))
           new_pb :: G[S=>R] -> G[T]
           new_pb gsr = ???????

G[S => R] = List (S, G[R]) 

new_pb ss_grs = 
   List.sum (List.map (\(s,gr) -> fst (snd (f(t,s)) ss_grs)

pi_left :: ((T,S) => T)
pi_left (t,s) = (t, \(g : G[T]) -> (g,zero)

fanout :: T => (T, T)
fanout t = ((t,t), \(g1,g2) -> (sum g1 g2)

We must be able to define 0 and (+) on G[T], for any T, 
including function types: S=>R.

zero :: List (S,G[R])
zero = List.empty // Imposing a monoid structure 

sum :: List(S,G[R]) -> List(S,G[R]) -> List(S,G[R])
sum = List.append // Imposing a monoid structure
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A differentiable papply (aka: curry)
Does this “work”? Category theory to the rescue

curry :: ((T,S) => R) -> (T => (S => R))
curry f = new_f
  where 
    new_f :: T -> (S => R, G[S=>R] -> G[T])
    new_f t = 
       let new_g :: S -> (R, G[R] -> G[S])
           new_g s = 
              let (r,pullback) = f(t,s)
              in (r, \gr -> snd (pullback gr))
           new_pb :: G[S=>R] -> G[T]
           new_pb ss_grs = List.sum $
             List.map (\(s,gr) -> fst (snd (f(t,s)) ss_grs 
       in (new_g, new_pb)

G[S => R] = List (S, G[R]) 

eval :: (T => S, T) => S
eval = ...

(.) :: (T => S) -> (S => R) -> (T => R) 
(.) = ...

id :: (T => T)
id = 

proj_left :: ((T,S) => T)
proj_left = ...

proj_right :: ((T,S) => S)
proj_right = ...

tup :: (X => A) -> (Y => B) -> ((X,Y) => (A,B))
tup = … Thm: for f:(T,S) => R, h : T => S => R

● (tuple (curry f) id) . eval ≌ f
● curry ((tuple h id)) . eval) ≌ h

+ Other usual laws of category theory (i.e. we can form a 
Cartesian Closed Category out of (=>) morphisms
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A working solution?
Proof formalized in Coq

Thm: for f:(T,S) => R, h : T => (S => R)
● (tuple (curry f) id) . eval ≌ f
● curry ((tuple h id)) . eval) ≌ h

Theorems say that β-laws hold, and 
η-laws hold.

i.e. if you have a program accepting and 
returning first-order types,  but uses 
partial applications internally, the program 
is going to be equivalent (through AD) as 
if we had fully inlined all intermediate 
partial applications 

Hence this solution “works” (*)

Proof requires  (≌) on co-tangent spaces. So when is:
x ≌ y : G[S=>R]

It turns out that G[S=>R] = List(S,G[R]) must behave 
like an “additive map” e.g:

(x,gx1):(x,gx2):xs ≌ (x,gx1 + gx2):xs
(x,zero):xs ≌ xs

See formalization for full technical details.

(*) Incidentally for forward-mode AD we need a different G[S=>R] definition. Not going to cover in this 
talk. 
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… but is it a workable solution?

Main appeal: cotangent spaces simple type-level functions of primal types:
G[R => S] = List (R, G[S])

Main problem: inefficient! 
curry :: ((T,S) => R) -> (T => (S => R))
curry f = new_f
  where 
    new_f :: T -> (S => R, G[S=>R] -> G[T])
    new_f t = 
       let new_g :: S -> (R, G[R] -> G[S])
           new_g s = 
              let (r,pullback) = f(t,s)
              in (r, \gr -> snd (pullback gr))
           new_pb :: G[S=>R] -> G[T]
           new_pb ss_grs = List.sum $
             List.map (\(s,gr) -> fst (snd (f(t,s)) ss_grs 
       in (new_g, new_pb)

We end up calling f and 
recomputing its (primal) 
value, to then just throw it 
away, many times!

We throw half of the returned 
value of the pullback away!
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An solution inspired by implicit closure conversion

Any first-class closure f : T -> S is really an object Closure T S:
data Closure T S where

   MkClosure :: Env -> StaticPtr (Env -> T -> S) -> Closure T S

Where Env is some (existentially quantified) environment and StaticPtr (Env -> T -> S) is a mere code 
pointer -- the entry of a closed function.

Key insight: Make cotangent spaces dependent on the primal value itself, instead of dependent on just 
the primal value type. 

If (f : T -> S) was actually a (Closure env f_static) then set G[f : T -> S] = G env

Why? Because f_static is just a constant, it can’t vary!

Idea appears in Pearlmutter & Siskind classic “Lambda the ultimate backpropagator” [TOPLAS’08]
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Existential + value-dependent types to the rescue

T1 => T2 = 
   exists Δ. (x : T1) -> Σ (y : T2). G[y : T2] -> (Δ, G[x : T1])

G [ v : T1 => T2 ] = 
   case v of 
   | exists Δ _ => Δ 

Δ : cotangent space of the environment over which we closed 
over.

Note that it’s also _returned_ by the pullback!

curry :: ((T,S) => R) -> (T => S => R)
curry (exists D. f) = pack () new_f
  where new_f :: (t:T) -> ((g : S => R), G[g:S=>R] -> (D, G[t:T])
        new_f t = 
           let g :: (s:S) -> (r:R, G[r:R] -> ((D,G[t:T]), G[s:S])
               g s = 
                  let (r, pullback) = f(t,s)
                  in (r, \gr -> let (cte,(ctt,cts)) = pullback gr
                                in ((cte,ctt), cts))
              new_pb :: G[g:S=>R] -> (D, G[t:T])
              new_pb env = env   // Magic (but type-correct)!
           in (pack (D,G[t:T]) g, new_pb)

Have a formalization of this idea in dependent 
type theory (Agda)

Plus proofs of the CCC laws in Coq. Tricky bits: 
● Precise notion of equivalence

○ Requires a higher-dimensional LR
● Encoding issues in a theorem prover 

(avoid large eliminations, use of 
recursion-recursion, another talk really)
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But Swift is not dependently-typed … 
Efficient solution: no recomputation but with reinterpret casts (AnyDerivative object)

curry :: ((T,S) => R) -> (T => (S => R))
curry (exists D. f) = pack () new_f
  where 
    new_f :: (t:T) -> ((g : S => R), G[g:S=>R] -> (D, G[t:T])
    new_f t = 
       let g :: (s:S) -> (r:R, G[r:R] -> ((D,G[t:T]), G[s:S])
           g s = 
              let (r, pullback) = f(t,s)
              in (r, \gr -> let (cte,(ctt,cts)) = pullback gr
                            in ((cte,ctt), cts))
           new_pb :: G[g:S=>R] -> (D, G[t:T])
           new_pb env = env   // Magic (but type-correct)!
       in (pack [..] g, new_pb)

G[S => T] = AnyDerivative // An “opaque” type with 0 and +
S => T = (S -> (T, G[T] -> (AnyDerivative,G[S]))

curry :: ((T,S) => R) -> (T => (S => R))
curry (exists D. f) = pack () new_f
  where 
   new_f :: (t:T) -> ((g : S => R), G[g:S=>R] -> (D, G[t:T])
   new_f t = 
      let g :: (s:S) -> (r:R, G[r:R] -> ((D,G[t:T]), G[s:S])
          g s = 
            let (r, pullback) = f(t,s)
            in (r, \gr -> let (cte,(ctt,cts)) = pullback gr
                          in ((cte,ctt), cts))
          new_pb :: G[g:S=>R] -> (D, G[t:T])
          new_pb env = env   
      in (pack [..] g, new_pb)

AnyDerivative

AnyDerivative

AnyDerivative
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Is the type-erased solution workable?

● Main appeal: efficiency and simplicity
● Main disadvantage: AnyDerivative not safe without storing runtime information. Hence it can be 

used internally by the AD compiler pass but not exposed to users. Practically this means: 

⊬ Differentiable (A => B) 

Hence, can’t write an external function and make it return gradients to “f”
func my_own_curry(f : (T,S) => R, x:T) : S => R  = \s -> f(x,s)

func bar(y : U) =  my_own_curry (\(t,s) -> … use y here …), … ) 

// Can’t make “bar” differentiable, though if we had inlined everything, it’d all work!
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Higher order derivatives: a sketch

newtype a => b = DiffRec (a -> (b, Bundle (G[a]) (G[b])))

data Bundle ta tb
  = BundleEnd
  | BundleTan { deriv :: (AnyDer, ta) -> (tb, Bundle ta tb), 

         pullback :: tb -> (AnyDer, ta, Bundle ta ta) }
vjp :: (a => b) -> Grad b -> (a => Grad a)
vjp (DiffRec f) gb = DiffRec new_f
  where new_f :: a -> (G[a], Bundle (G[a]) (G[a]))
        new_f a = let (b, bundle :: Bundle (Grad a) (Grad b)) = f a

           in case bundle of
               BundleEnd -> BundleEnd
               BundleTan deriv pullback -> 

// Just pick the inner bundle!
let (any, ta, b) = pullback gb in (ta, b)

// Similarly for jvp: 
jvp :: (a => b) -> Grad a -> (a => Grad b)
jvp = … 

We need, ahead of time, to create a data structure 
that’s amenable to arbitrary differentiation. That is, we 
need to make the user-facing vjp and jvp return 
themselves differentiable functions

Allows to compute, e.g., Hessian-vector products:

hvp(f, primals, vs) = 
   jvp(\x -> vjp f 1.0) vs primals 

Idea can be extended with “constantly zero” 
derivatives, infinitely unfoldable bundles (e.g. for sin() 
and exp()) etc.
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Thoughts and outlook

● In better shape if AD had happened after explicit closure conversion? 
● “Safe” AnyDerivative through runtime tests? Or by using the “slow” G[T=>R] = 

List (T, G[R]) for functional arguments, but internally fall back to the “fast” 
dependently-typed (erased) version? 

● Control flow, recursion, recursive types => know how to deal with, orthogonal

Slides covered just a fragment of the much more complete language-based AD 
design behind S4TF, including experimental extensions and discussion. More 
S4TF questions (including AD)? Reach out:

swift@tensorflow.org

mailto:swift@tensorflow.org
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Thanks!

● Forward/reverse mode symbolic AD is fairly simple in A-normal form or SSA

● Simple AD rules + differentiable curry = AD for HO functions

● Simple AD rules + recursive bundle structure = HO AD

A new interpretation of function gradients plus some simplification and proofs 
of ideas behind “Lambda the Ultimate Backpropagator” in a statically typed setting


