
Modular Automatic Differentiation
with higher-order functions

Dimitrios Vytiniotis (dvytin@google.com)
Based on work and ideas of many from Google and DeepMind: Richard Wei, Parker Schuh, Marc Rasi,
James Bradbury, Dan Zheng, Dougal MacLaurin, Matthew Johnson, Gordon Plotkin, Matthew Willson,

Robert Stanforth, DM Performance and ML Programming Teams, and the Swift for Tensorflow project

Modular AD with higher order functions (WG2.8)

First few decades of deep learning

name: "AlexNet"

layer {

 name: "data"

 type: "Input"

 top: "data"

 input_param { shape: … }

}

layer {

 name: "conv1"

 ...

 }

layer {

 name: “relu1”

 ...

}

Models programmed with text files, configuration
scripts and built-in procedures (e.g. stochastic gradient
descent variants)

Modular AD with higher order functions (WG2.8)

The era of differentiable programming

● Custom optimizers and second-order optimization methods (e.g. K-FAC)
● Optimization through traditional algorithms, e.g. parsing and dynamic

programming
● Differentiation for custom loss functions, e.g. Conditional Random Fields
● Differentiable interpreters, neural Turing machines
● Data dependent control and data flow, e.g. graph neural networks
● Custom gradient checkpointing, reinforcement learning, …

AD support in TensorFlow, PyTorch, Julia, Jax, DiffSharp, and older systems like
Stalingrad, Vlad, Tapenade, and more

https://arxiv.org/pdf/1503.05671.pdf
https://arxiv.org/abs/1505.08075
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://arxiv.org/pdf/1611.02109.pdf
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1511.05493

Modular AD with higher order functions (WG2.8)

Swift for Tensorflow: language support for AD

for epoch in 1...epochCount {

 for i in 0 ..< Int(labels.shape[0]) / batchSize {

 let x = minibatch(in: images, at: i)

 let y = minibatch(in: numericLabels, at: i)

 // Compute the gradient with respect to the model.

 let 𝛁model = classifier.gradient { classifier -> Tensor<Float> in
 let ŷ = classifier(x)

 let loss = softmaxCrossEntropy(logits: ŷ, labels: y)

 return loss }

 optimizer.update(&classifier.allDifferentiableVariables, along: 𝛁model)
 }

www.tensorflow.org/swift
https://github.com/apple/swift/tree/tensorflow

Differentiation operator on closure:
(fun classifier => … return loss)

http://www.tensorflow.org/swift
https://github.com/apple/swift/tree/tensorflow

Modular AD with higher order functions (WG2.8)

The essence of AD in Swift for Tensorflow (S4TF)

An ahead-of-time (compile-time) symbolic AD phase

● Every differentiable function definition: f(x1:T1,...xn:Tn) : R of type (T1,..,Tn) -> R is
compiled to a data structure f of type (T1,...Tn) => R, a “bundle”

● T1,...,Tn => R is just:
●

T1,...,Tn -> (R, { derivative : (T1.TangentVector,...,
 Tn.TangentVector) -∘ R.TangentVector,
 pullback : R.TangentVector -∘
 (T1.TangentVector,...,Tn.TangentVector })

● Bundle f can be (1) applied, or (2) passed in to other functions, or even (3) partially applied

Jacobian-Vector product

Vector-Jacobian product

-∘: linear function
f(0) = 0
f(x1+x2) = f(x1)+f(x2)

∇ NOT an operator on syntax
trees!

Modular AD with higher order functions (WG2.8)

(Co)-Tangent Spaces

T1,...,Tn => R is just:

T1,...,Tn -> (R, { derivative : (T1.TangentVector,...,
 Tn.TangentVector) -> R.TangentVector,
 pullback : R.TangentVector ->
 (T1.TangentVector,...,Tn.TangentVector) })

What is T.TangentVector?
● In S4TF every differentiable type T defines a space of perturbations through an associated type in a

Swift Differentiable protocol (a bit like a Haskell type class)
● In math (and in some interpretations of differentiation for higher-order functions) there’s also an

separate notion of a CoTangentVector, but (like Swift) we will not be making the distinction.
● Just for brevity of notation we will use a G[.] type operator to denote the space of perturbations:

T1,...,Tn -> (R, { derivative : (G[T1],..., G[Tn]) -> G[R],
 pullback : G[R] -> (G[T1],...,G[Tn]) })

Modular AD with higher order functions (WG2.8)

(Co)-Tangent Spaces continued

T1,...,Tn => R defined as:
T1,...,Tn -> (R, { derivative : (G[T1],..., G[Tn]) -> G[R],
 pullback : G[R] -> (G[T1],...,G[Tn]) })

G[Real] = Real
zero = …
sum = …

G[(T1,T2)] = (G[T1], G[T2])
zero = …
sum = …

G[Tensor] = Tensor
zero = …
sum = …

For first-order types G[T] = T!

Hence Conal Elliott here dispenses with G[.]:

D :: (A -> B) -> (A -> (B, A -∘ B))

… Is Conal right? …

https://arxiv.org/abs/1804.00746

Modular AD with higher order functions (WG2.8)

Recap: Reverse-mode AD in one slide
(we will focus for the rest of the talk on reverse mode AD)

// Let f be a function bundle:
f : (Float,Float) => Float

// Let’s try to differentiate:
func g(x:Float, y:Float) : Float {
 let (y1,y2) = dup(y);
 let v = f(x,y1);
 let r = f(v,y2);
 return r;
}

// Recall (just doing reverse-mode AD for simplicity):
f :(Float,Float) -> (Float, G[Float] -> (G[Float],G[Float]))

func g(x:Float, y:Float) {
 let ((y1,y2),pb_dup) = dup(y);
 let (v, pb_f1) = f(x,y1);
 let (r, pb_f2) = f(v,y2);
 return (r, gt in {
 let (gv,gy2) = pb_f2(gt)
 let (gx,gy1) = pb_f1(gv)
 let gy = pb_dup(gy1, gy2)
 return (gx, gy);
 })
}
// Hence we can produce g :: (Float,Float) => Float

● Progressively convert every f(x1..xn) of a differentiable function f to f(x1..xn)
● Compose pullbacks in the opposite direction

func dup(x) { return (x,x); }
func dup(x) { return ((x,x), (g1,g2) in g1+g2) }

Note: x in body is just Swift
notation for \x -> body

Modular AD with higher order functions (WG2.8)

Enter partial applications
Higher-order functions are an essential part of general purpose programming languages

func f(x : Tensor) : Tensor -> Tensor {
 return (y in x*y + x)
}
==
⇒ in SIL:
==
func clos_1(y x : Tensor) : Tensor {
 return (x*y + x);
func f(x : Tensor) : Tensor -> Tensor {
 return papply(clos_1,x);
}

struct Model {
 Tensor w;
 func call(x:Tensor):Tensor { return (x*w); }
}
… use site …
mnist.call(inputs);

==
⇒ in SIL:
==
func call_1(x: Tensor, self : Model) : Tensor {
 return (x * self.w);
}
… use site …
h = papply(call_1,mnist)
r = h(inputs)

papply : ((T1..Tn,S1..Sn) -> R, S1..Sn) -> (T1..Tn) -> R

If we have built somehow a bundle for clos_1 then we
want “f” to return a bundle for the partial application!

If we have built somehow a bundle for call_1
then we want papply(call_1,mnist) to
return a bundle for the partial application!

Modular AD with higher order functions (WG2.8)

Need: a differentiable partial application

func f(x : Tensor) : Tensor -> Tensor {
 return (y in x*y + x)
}
==
⇒ in SIL:
==
// clos_1 : (Tensor,Tensor) => Tensor
func clos_1(y x : Tensor) : Tensor {
 return (x*y + x);
}
// f : Tensor => Tensor => Tensor
func f(x : Tensor) : Tensor => Tensor {
 papply(clos_1,x)
}

struct Model {
 Tensor w;
 func call(x:Tensor) : Tensor { return (x*w);}
}
… use site …
mnist.call(inputs);

==
⇒ in SIL:
==
// call_1 : (Tensor,Tensor) => Tensor
func call_1(x: Tensor, self : Model) : Tensor {
 return (x * self.w);
}
… use site …
h = papply(call_1,mnist) : Tensor => Tensor
r = h(inputs)

papply : ((T1..Tn,S1..Sn) => R, S1..Sn) => (T1..Tn) => R

Modular AD with higher order functions (WG2.8)

Higher-order arguments equally important

func f(x : Tensor, xs : Array Tensor) : Array Tensor {
 let g = y in { x*y + x }
 return Array.map(g, xs)
}
==
⇒ in SIL:
==
// clos_1 : (Tensor,Tensor) => Tensor
func clos_1(y x : Tensor) : Tensor { return (x*y + x); }
func f(x : Tensor, xs : Array<Tensor>) : Array<Tensor> {
 g = papply(clos_1,x);
 return Array.map(g,xs);
}
// Must have created bundle:
Array.map : (Tensor => Tensor, Array<Tensor>) => Array<Tensor>

G[(T1..Tn) => S] = ?

Modular AD with higher order functions (WG2.8)

A differentiable papply (aka: curry)
NOTE: switching notation to Haskell, same concepts

curry :: ((T,S) => R) -> (T => (S => R))
curry f = new_f
 where
 new_f :: T -> (S => R, G[S=>R] -> G[T])
 new_f t =
 let new_g :: S -> (R, G[R] -> G[S])
 new_g s =
 let (r,pullback) = f(t,s)
 in (r, \gr -> snd (pullback gr))
 new_pb :: G[S=>R] -> G[T]
 new_pb gsr = ???????

● Need to produce a G[T]
● Hence must invoke f’s pullback somehow (of type G[R] =>

(G[T],G[S])
● Hence must “cook up” a G[R]
● … but also an actual S to get to the pullback -- we only have a

(t : T) in scope, but nothing of type S!

First attempt:
G[S => R] = (S, G[R])
new_pb (s,gr) = fst (snd (f(t,s)) gr)

Does this work*?

(*) and BTW what does “work” mean??

Modular AD with higher order functions (WG2.8)

A differentiable papply (aka: curry)
A failed attempt

curry :: ((T,S) => R) -> (T => (S => R))
curry f = new_f
 where
 new_f :: T -> (S => R, G[S=>R] -> G[T])
 new_f t =
 let new_g :: S -> (R, G[R] -> G[S])
 new_g s =
 let (r,pullback) = f(t,s)
 in (r, \gr -> snd (pullback gr))
 new_pb :: G[S=>R] -> G[T]
 new_pb gsr = ???????

First attempt:
G[S => R] = (S, G[R])
new_pb (s,gr) = fst (snd (f(t,s)) gr)

pi_left :: (T,S) => T
pi_left (t,s) = (t, \(g : G[T]) -> (g,zero)

fanout :: T => (T, T)
fanout t = ((t,t), \(g1,g2) -> (sum g1 g2)

We must be able to define 0 and (+) on G[T], for any T,
including function types: S=>R.

zero :: (S, G[R])
zero = … ??? … // No way we can define this!

sum :: (S, G[R]) -> (S,G[R]) -> (S, G[R])
sum = … ??? … // No way we can define this!

Modular AD with higher order functions (WG2.8)

A differentiable papply (aka: curry)
Refining the failed attempt

curry :: ((T,S) => R) -> (T => (S => R))
curry f = new_f
 where
 new_f :: T -> (S => R, G[S=>R] -> G[T])
 new_f t =
 let new_g :: S -> (R, G[R] -> G[S])
 new_g s =
 let (r,pullback) = f(t,s)
 in (r, \gr -> snd (pullback gr))
 new_pb :: G[S=>R] -> G[T]
 new_pb gsr = ???????

G[S => R] = List (S, G[R])

new_pb ss_grs =
 List.sum (List.map (\(s,gr) -> fst (snd (f(t,s)) ss_grs)

pi_left :: ((T,S) => T)
pi_left (t,s) = (t, \(g : G[T]) -> (g,zero)

fanout :: T => (T, T)
fanout t = ((t,t), \(g1,g2) -> (sum g1 g2)

We must be able to define 0 and (+) on G[T], for any T,
including function types: S=>R.

zero :: List (S,G[R])
zero = List.empty // Imposing a monoid structure

sum :: List(S,G[R]) -> List(S,G[R]) -> List(S,G[R])
sum = List.append // Imposing a monoid structure

Modular AD with higher order functions (WG2.8)

A differentiable papply (aka: curry)
Does this “work”? Category theory to the rescue

curry :: ((T,S) => R) -> (T => (S => R))
curry f = new_f
 where
 new_f :: T -> (S => R, G[S=>R] -> G[T])
 new_f t =
 let new_g :: S -> (R, G[R] -> G[S])
 new_g s =
 let (r,pullback) = f(t,s)
 in (r, \gr -> snd (pullback gr))
 new_pb :: G[S=>R] -> G[T]
 new_pb ss_grs = List.sum $
 List.map (\(s,gr) -> fst (snd (f(t,s)) ss_grs
 in (new_g, new_pb)

G[S => R] = List (S, G[R])

eval :: (T => S, T) => S
eval = ...

(.) :: (T => S) -> (S => R) -> (T => R)
(.) = ...

id :: (T => T)
id =

proj_left :: ((T,S) => T)
proj_left = ...

proj_right :: ((T,S) => S)
proj_right = ...

tup :: (X => A) -> (Y => B) -> ((X,Y) => (A,B))
tup = … Thm: for f:(T,S) => R, h : T => S => R

● (tuple (curry f) id) . eval ≌ f
● curry ((tuple h id)) . eval) ≌ h

+ Other usual laws of category theory (i.e. we can form a
Cartesian Closed Category out of (=>) morphisms

Modular AD with higher order functions (WG2.8)

A working solution?
Proof formalized in Coq

Thm: for f:(T,S) => R, h : T => (S => R)
● (tuple (curry f) id) . eval ≌ f
● curry ((tuple h id)) . eval) ≌ h

Theorems say that β-laws hold, and
η-laws hold.

i.e. if you have a program accepting and
returning first-order types, but uses
partial applications internally, the program
is going to be equivalent (through AD) as
if we had fully inlined all intermediate
partial applications

Hence this solution “works” (*)

Proof requires (≌) on co-tangent spaces. So when is:
x ≌ y : G[S=>R]

It turns out that G[S=>R] = List(S,G[R]) must behave
like an “additive map” e.g:

(x,gx1):(x,gx2):xs ≌ (x,gx1 + gx2):xs
(x,zero):xs ≌ xs

See formalization for full technical details.

(*) Incidentally for forward-mode AD we need a different G[S=>R] definition. Not going to cover in this
talk.

Modular AD with higher order functions (WG2.8)

… but is it a workable solution?

Main appeal: cotangent spaces simple type-level functions of primal types:
G[R => S] = List (R, G[S])

Main problem: inefficient!
curry :: ((T,S) => R) -> (T => (S => R))
curry f = new_f
 where
 new_f :: T -> (S => R, G[S=>R] -> G[T])
 new_f t =
 let new_g :: S -> (R, G[R] -> G[S])
 new_g s =
 let (r,pullback) = f(t,s)
 in (r, \gr -> snd (pullback gr))
 new_pb :: G[S=>R] -> G[T]
 new_pb ss_grs = List.sum $
 List.map (\(s,gr) -> fst (snd (f(t,s)) ss_grs
 in (new_g, new_pb)

We end up calling f and
recomputing its (primal)
value, to then just throw it
away, many times!

We throw half of the returned
value of the pullback away!

Modular AD with higher order functions (WG2.8)

An solution inspired by implicit closure conversion

Any first-class closure f : T -> S is really an object Closure T S:
data Closure T S where

 MkClosure :: Env -> StaticPtr (Env -> T -> S) -> Closure T S

Where Env is some (existentially quantified) environment and StaticPtr (Env -> T -> S) is a mere code
pointer -- the entry of a closed function.

Key insight: Make cotangent spaces dependent on the primal value itself, instead of dependent on just
the primal value type.

If (f : T -> S) was actually a (Closure env f_static) then set G[f : T -> S] = G env

Why? Because f_static is just a constant, it can’t vary!

Idea appears in Pearlmutter & Siskind classic “Lambda the ultimate backpropagator” [TOPLAS’08]

Modular AD with higher order functions (WG2.8)

Existential + value-dependent types to the rescue

T1 => T2 =
 exists Δ. (x : T1) -> Σ (y : T2). G[y : T2] -> (Δ, G[x : T1])

G [v : T1 => T2] =
 case v of
 | exists Δ _ => Δ

Δ : cotangent space of the environment over which we closed
over.

Note that it’s also _returned_ by the pullback!

curry :: ((T,S) => R) -> (T => S => R)
curry (exists D. f) = pack () new_f
 where new_f :: (t:T) -> ((g : S => R), G[g:S=>R] -> (D, G[t:T])
 new_f t =
 let g :: (s:S) -> (r:R, G[r:R] -> ((D,G[t:T]), G[s:S])
 g s =
 let (r, pullback) = f(t,s)
 in (r, \gr -> let (cte,(ctt,cts)) = pullback gr
 in ((cte,ctt), cts))
 new_pb :: G[g:S=>R] -> (D, G[t:T])
 new_pb env = env // Magic (but type-correct)!
 in (pack (D,G[t:T]) g, new_pb)

Have a formalization of this idea in dependent
type theory (Agda)

Plus proofs of the CCC laws in Coq. Tricky bits:
● Precise notion of equivalence

○ Requires a higher-dimensional LR
● Encoding issues in a theorem prover

(avoid large eliminations, use of
recursion-recursion, another talk really)

Modular AD with higher order functions (WG2.8)

But Swift is not dependently-typed …
Efficient solution: no recomputation but with reinterpret casts (AnyDerivative object)

curry :: ((T,S) => R) -> (T => (S => R))
curry (exists D. f) = pack () new_f
 where
 new_f :: (t:T) -> ((g : S => R), G[g:S=>R] -> (D, G[t:T])
 new_f t =
 let g :: (s:S) -> (r:R, G[r:R] -> ((D,G[t:T]), G[s:S])
 g s =
 let (r, pullback) = f(t,s)
 in (r, \gr -> let (cte,(ctt,cts)) = pullback gr
 in ((cte,ctt), cts))
 new_pb :: G[g:S=>R] -> (D, G[t:T])
 new_pb env = env // Magic (but type-correct)!
 in (pack [..] g, new_pb)

G[S => T] = AnyDerivative // An “opaque” type with 0 and +
S => T = (S -> (T, G[T] -> (AnyDerivative,G[S]))

curry :: ((T,S) => R) -> (T => (S => R))
curry (exists D. f) = pack () new_f
 where
 new_f :: (t:T) -> ((g : S => R), G[g:S=>R] -> (D, G[t:T])
 new_f t =
 let g :: (s:S) -> (r:R, G[r:R] -> ((D,G[t:T]), G[s:S])
 g s =
 let (r, pullback) = f(t,s)
 in (r, \gr -> let (cte,(ctt,cts)) = pullback gr
 in ((cte,ctt), cts))
 new_pb :: G[g:S=>R] -> (D, G[t:T])
 new_pb env = env
 in (pack [..] g, new_pb)

AnyDerivative

AnyDerivative

AnyDerivative

Modular AD with higher order functions (WG2.8)

Is the type-erased solution workable?

● Main appeal: efficiency and simplicity
● Main disadvantage: AnyDerivative not safe without storing runtime information. Hence it can be

used internally by the AD compiler pass but not exposed to users. Practically this means:

⊬ Differentiable (A => B)

Hence, can’t write an external function and make it return gradients to “f”
func my_own_curry(f : (T,S) => R, x:T) : S => R = \s -> f(x,s)

func bar(y : U) = my_own_curry (\(t,s) -> … use y here …), …)

// Can’t make “bar” differentiable, though if we had inlined everything, it’d all work!

Modular AD with higher order functions (WG2.8)

Higher order derivatives: a sketch

newtype a => b = DiffRec (a -> (b, Bundle (G[a]) (G[b])))

data Bundle ta tb
 = BundleEnd
 | BundleTan { deriv :: (AnyDer, ta) -> (tb, Bundle ta tb),

 pullback :: tb -> (AnyDer, ta, Bundle ta ta) }
vjp :: (a => b) -> Grad b -> (a => Grad a)
vjp (DiffRec f) gb = DiffRec new_f
 where new_f :: a -> (G[a], Bundle (G[a]) (G[a]))
 new_f a = let (b, bundle :: Bundle (Grad a) (Grad b)) = f a

 in case bundle of
 BundleEnd -> BundleEnd
 BundleTan deriv pullback ->

// Just pick the inner bundle!
let (any, ta, b) = pullback gb in (ta, b)

// Similarly for jvp:
jvp :: (a => b) -> Grad a -> (a => Grad b)
jvp = …

We need, ahead of time, to create a data structure
that’s amenable to arbitrary differentiation. That is, we
need to make the user-facing vjp and jvp return
themselves differentiable functions

Allows to compute, e.g., Hessian-vector products:

hvp(f, primals, vs) =
 jvp(\x -> vjp f 1.0) vs primals

Idea can be extended with “constantly zero”
derivatives, infinitely unfoldable bundles (e.g. for sin()
and exp()) etc.

Modular AD with higher order functions (WG2.8)

Thoughts and outlook

● In better shape if AD had happened after explicit closure conversion?
● “Safe” AnyDerivative through runtime tests? Or by using the “slow” G[T=>R] =

List (T, G[R]) for functional arguments, but internally fall back to the “fast”
dependently-typed (erased) version?

● Control flow, recursion, recursive types => know how to deal with, orthogonal

Slides covered just a fragment of the much more complete language-based AD
design behind S4TF, including experimental extensions and discussion. More
S4TF questions (including AD)? Reach out:

swift@tensorflow.org

mailto:swift@tensorflow.org

Modular AD with higher order functions (WG2.8)

Thanks!

● Forward/reverse mode symbolic AD is fairly simple in A-normal form or SSA

● Simple AD rules + differentiable curry = AD for HO functions

● Simple AD rules + recursive bundle structure = HO AD

A new interpretation of function gradients plus some simplification and proofs
of ideas behind “Lambda the Ultimate Backpropagator” in a statically typed setting

