
Tiny functions for lots of things

Keith Winstein

joint work with: Francis Y. Yan , Sadjad Fouladi , John Emmons ,
Riad S. Wahby , Emre Orbay , Brennan Shacklett , William Zeng ,

Dan Iter , Shuvo Chaterjee, Catherine Wu
Daniel Reiter Horn , Ken Elkabany , Chris Lesniewski-Laas ,

Karthikeyan Vasuki Balasubramaniam , Rahul Bhalerao , George Porter , Anirudh Sivaraman

Stanford University

Saratoga High School

Dropbox

UC San Diego

MIT

Message of this talk

I A little “functional-ish” programming goes a long way.

I It’s worth refactoring megamodules (codecs, TCP,

compilers, machine learning) using ideas from

functional programming.

I Just the ability to name, save, and restore program

states is powerful in its own right.

Breaking megamodules into functions

Lepton: JPEG recompression in a distributed filesystem

I “functional” JPEG codec for boundary-oblivious sharding

ExCamera: Fast interactive video encoding

I “functional” video codec for fine-grained parallelism

Salsify: Videoconferencing with co-designed codec and transport protocol

I “functional” codec to explore an execution path without committing

gg: IR for “laptop to lambda” jobs with 8,000-way parallelism

I “functional” representation of practical parallel pipelines

Breaking megamodules into functions

Lepton: JPEG recompression in a distributed filesystem

I “functional” JPEG codec for boundary-oblivious sharding

ExCamera: Fast interactive video encoding

I “functional” video codec for fine-grained parallelism

Salsify: Videoconferencing with co-designed codec and transport protocol

I “functional” codec to explore an execution path without committing

gg: IR for “laptop to lambda” jobs with 8,000-way parallelism

I “functional” representation of practical parallel pipelines

System 1: Lepton (distributed JPEG recompression)

Daniel Reiter Horn, Ken Elkabany, Chris Lesniewski-Lass, and KW, The Design, Implementation, and
Deployment of a System to Transparently Compress Hundreds of Petabytes of Image Files for a
File-Storage Service, in NSDI 2017 (Community Award winner).

Storage Overview at Dropbox
• ¾ Media

• Roughly an Exabyte in storage

• Can we save backend space?

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Other

Videos

JPEGs

JPEG File

7x71x7

7x1
DC

• Header
• 8x8 blocks of pixels
– DCT transformed into 64 coefs

o Lossless

– Each divided by large quantizer
o Lossy

– Serialized using Huffman code
o Lossless

Image credit: wikimedia

Idea: save storage with transparent recompression

I Requirement: byte-for-byte reconstruction of original file

I Approach: improve bottom “lossless” layer only

I Replace DC-predicted Huffman code with an arithmetic code

I Use a probability model to predict “1” vs. “0”

Prior work

15

20

30

40

50

100

150

200

6 7 8 9 10 15 20 25

D
ec

om
p

re
ss

io
n

 s
pe

ed
 (

M
bi

ts
/s

)

Compression savings (percent)

Bet
te
r

MozJPEG
(arithmetic)

JPEGrescan
(progressive)

packjpg
(global sort

 + big model
 + arithmetic)

Challenge: distributed filesystem with arbitrary chunk boundaries

bytes 0..N-1 bytes N..2N-1 bytes 2N..end

server #272 server #140 server #803

Challenge: distributed filesystem with arbitrary chunk boundaries

representing bytes 0..N-1 representing bytes N..2N-1 representing bytes 2N..end

server #272 server #140 server #803

Lepton Lepton Lepton

Challenge: distributed filesystem with arbitrary chunk boundaries

representing bytes 0..N-1 representing bytes N..2N-1 representing bytes 2N..end

server #272 server #140 server #803

Lepton Lepton Lepton

bytes 0..N-1

bytes N..2N-1
bytes 2N..end

Requirements for distributed compression

I Store and decode file in independent chunks
I Can start at any byte offset

I Achieve > 100 Mbps decoding speed per chunk

I Don’t lose data
I Immune to adversarial/pathological input files
I Every time program changed, qualify on a billion images
I Three compilers (with and without sanitizers) must match on all billion images

Challenges

I Baseline JPEG is encoded as a stream of Huffman codewords
with opaque state (DC prediction).

I encode(HuffmanTable, vector<Coefficient>)

→ vector<bit>

I How to encode chunk of original file, starting in midstream?
I Midstream = in the middle of a Huffman codeword
I Midstream = unknown DC (average) value

When the client retrieves a chunk of a JPEG file, how does the
fileserver re-encode that chunk from Lepton back to JPEG?

Making the state of the JPEG encoder explicit

I Formulate JPEG encoder in explicit state-passing style

I Implement DC-predicted Huffman encoder that can resume
from any byte boundary

I
encode(HuffmanTable, vector<bit>, int dc, vector<Coefficient>)

→ vector<bit>

Results

15

20

30

40

50

100

150

200

6 7 8 9 10 15 20 25

D
ec

om
p

re
ss

io
n

 s
pe

ed
 (

M
bi

ts
/s

)

Compression savings (percent)

Bet
te
r

MozJPEG
(arithmetic)

JPEGrescan
(progressive)

packjpg
(global sort

 + big model
 + arithmetic)

Results

15

20

30

40

50

100

150

200

6 7 8 9 10 15 20 25

D
ec

om
p

re
ss

io
n

 s
pe

ed
 (

M
bi

ts
/s

)

Compression savings (percent)

Bet
te
r

Lepton

MozJPEG
(arithmetic)

JPEGrescan
(progressive)

packjpg
(global sort

 + big model
 + arithmetic)

Deployment
• Lepton has encoded 150 billion files
– 203 PiB of JPEG files
– Saving 46 PiB
– So far…

o Backfilling at > 6000 images per second

Power Usage at 6,000 Encodes

21:00
00:00

03:00
06:00

09:00
12:00

15:00
18:00

21:00
00:00

03:00
0

50

100

150

200

250

300

C
h

a
ss

is
 3

o
w

e
r

(k
:

)

Lepton concluding thoughts

I A little bit of functional programming can go a long way.

I Functional JPEG codec lets Lepton distribute decoding with
arbitrary chunk boundaries and parallelize within each chunk.

System 2: ExCamera (fine-grained parallel video processing)

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and KW, Encoding, Fast and Slow: Low-Latency
Video Processing Using Thousands of Tiny Threads, in NSDI 2017.

https://ex.camera

https://ex.camera

What we currently have

• People can make changes to a word-processing document

• The changes are instantly visible for the others

3

What we would like to have

• People can interactively edit and transform a video

• The changes are instantly visible for the others

for Video?

"Apply this awesome filter to my video."

"Look everywhere for this face in this movie."

"Remake Star Wars Episode I without Jar Jar."

Can we achieve interactive collaborative video editing 
by using massive parallelism?

Currently, running such pipelines on videos takes hours and
hours, even for a short video.

The Problem

The Question

The challenges

• Low-latency video processing would need thousands of threads, running in
parallel, with instant startup.

• However, the finer-grained the parallelism, the worse the compression
efficiency.

9

Enter ExCamera

• We made two contributions:

• Framework to run 5,000-way parallel jobs with IPC on a commercial
“cloud function” service.

• Purely functional video codec for massive fine-grained parallelism.

• We call the whole system ExCamera.

10

9

Now we have the threads, but...

• With the existing encoders, the finer-grained the parallelism, the worse the
compression efficiency.

18

Video Codec

• A piece of software or hardware that compresses and decompresses digital
video.

19

1011000101101010001
0001111111011001110
0110011101110011001
0010000...001001101
0010011011011011010
1111101001100101000
0010011011011011010

Encoder Decoder

How video compression works

• Exploit the temporal redundancy in adjacent images.

• Store the first image on its entirety: a key frame.

• For other images, only store a "diff" with the previous images: an interframe.

20

In a 4K video @15Mbps, a key frame is ~1 MB, but an interframe is ~25 KB.

Existing video codecs only expose a simple interface

encode([!,!,...,!]) → keyframe + interframe[2:n]

decode(keyframe + interframe[2:n]) → [!,!,...,!]

21

compressed video

encode(i[1:200]) → keyframe1 + interframe[2:200]

[thread 01] encode(i[1:10]) → kf1 + if[2:10]
[thread 02] encode(i[11:20]) → kf11 + if[12:20]
[thread 03] encode(i[21:30]) → kf21 + if[22:30]
 ⠇
[thread 20] encode(i[191:200]) → kf191 + if[192:200]

Traditional parallel video encoding is limited

22
finer-grained parallelism ⇒ more key frames ⇒ worse compression efficiency

parallel ↓

serial ↓

+1 MB

+1 MB

+1 MB

We need a way to start encoding mid-stream

• Start encoding mid-stream needs access to intermediate computations.

• Traditional video codecs do not expose this information.

• We formulated this internal information and we made it explicit: the “state”.

23

The decoder is an automaton

24

state
interframe

state statestate
key frame interframe interframe

The state is consisted of reference images and probability models

prob tables’

target
state

output

source
state

frame
prob tables

What we built: a video codec in explicit state-passing style

• VP8 decoder with no inner state:

decode(state, frame) → (state′, image)

• VP8 encoder: resume from specified state

encode(state, image) → interframe

• Adapt a frame to a different source state

rebase(state, image, interframe) → interframe′

25

Putting it all together: ExCamera

• Divide the video into tiny chunks:

• [Parallel] encode tiny independent chunks.

• [Serial] rebase the chunks together and remove extra keyframes.

26

1. [Parallel] Download a tiny chunk of raw video

27

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

2. [Parallel] vpxenc → keyframe, interframe[2:n]

28

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

Google's VP8 encoder  
encode(img[1:n]) → keyframe + interframe[2:n]

3. [Parallel] decode → state ↝ next thread

29

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

Our explicit-state style decoder 
decode(state, frame) → (state′, image)

4. [Parallel] last thread’s state ↝ encode

30

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

Our explicit-state style encoder 
encode(state, image) → interframe

5. [Serial] last thread’s state ↝ rebase → state ↝ next thread

31

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

Adapt a frame to a different source state  
rebase(state, image, interframe) → interframe′

5. [Serial] last thread’s state ↝ rebase → state ↝ next thread

32

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

Adapt a frame to a different source state  
rebase(state, image, interframe) → interframe′

6. [Parallel] Upload finished video

33

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

Wide range of different configurations

34

ExCamera[n, x]
number of frames in each chunk

Wide range of different configurations

35

ExCamera[n, x]
number of chunks "rebased" together

How well does it compress?

37

16

17

18

19

20

21

22

5 10 20 30 40 50 70

qu
al

ity
 (

S
S

IM
 d

B
)

average bitrate (Mbit/s)

vpx (1 thread)

vpx (m
ultith

readed)

How well does it compress?

38

16

17

18

19

20

21

22

5 10 20 30 40 50 70

qu
al

ity
 (

S
S

IM
 d

B
)

average bitrate (Mbit/s)

ExCamera[6, 1]

vpx (1 thread)

vpx (m
ultith

readed)

How well does it compress?

39

16

17

18

19

20

21

22

5 10 20 30 40 50 70

qu
al

ity
 (

S
S

IM
 d

B
)

average bitrate (Mbit/s)

ExCamera[6, 1]

ExCamera[6, 16]
vpx (1 thread)±3%

ExCamera[6, 16] 2.6 mins

14.8-minute 4K Video @20dB

vpxenc Single-Threaded 453 mins

vpxenc Multi-Threaded 149 mins

YouTube (H.264) 37 mins

ExCamera concluding thoughts

I Functional video codec lets ExCamera parallelize at fine granularity.

I Many interactive jobs call for similar approach:
I Image and video filters
I 3D artists
I Compilation and software testing
I Interactive machine learning
I Database queries
I Data visualization
I Genomics
I Search

I Distributed systems will need to treat application state as a first-class object.

I Every program soon: do in 1 hour do in 1 second for 9¢

System 3: Salsify (videoconferencing)

Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S. Wahby, and KW, Salsify:
low-latency network video through tighter integration between a video codec and a transport
protocol, in NSDI 2018.

https://snr.stanford.edu/salsify

https://snr.stanford.edu/salsify

WebRTC
(Chrome 65)

Current systems do not react fast enough to
network variations, end up congesting
the network, causing stalls and glitches.

video
codec

transport
protocol

Today's systems combine two (loosely-coupled) components

�10

Two distinct modules, two separate control loops

�11

target bit rate

video
codec

transport
protocol

300 packets/s24 frames/s

compressed frames

Transport tells us how big the next frame should be, but...

It’s challenging for any codec to choose the appropriate  
quality settings upfront to meet a target size—they tend to

over-/undershoot the target.

�19

How to get an accurate frame out of an inaccurate codec

• Trial and error: Encode with different quality settings, pick the one that fits.

• Not possible with existing codecs.

�20

frame frame frame frame

After encoding a frame, the encoder goes through a state
transition that is impossible to undo

�21

There’s no way to undo an encoded frame in current codecs

�22

encode(🏞,🏞,...) → frames...

The state is internal to the encoder—no way
to save/restore the state.

Functional video codec to the rescue

encode(state, 🏞) → state′, frame

�23

Salsify’s functional video codec exposes the
state that can be saved/restored.

Order two, pick the one that fits!

• Salsify’s functional video codec can explore different execution paths
without committing to them.

• For each frame, codec presents the transport with three options:
A slightly-higher-quality version,
A slightly-lower-quality version,
Discarding the frame.

�24

bet
ter

worse

50 K
B

10 KB

Salsify’s architecture:
Unified control loop

�25

transport protocol &
video codec

Codec → Transport  
“Here’s two versions of the current frame.”

�26

bet
ter

worse

50 K
B

25 KB

30 KBtarget frame size

Transport → Codec 
“I picked option 2. Base the next frame on its exiting state.”

�27

25 KB

30 KBtarget frame size

Codec → Transport 
“Here’s two versions of the latest frame.”

�28

bet
ter

worse

50 K
B

25 KB

55 KBtarget frame size

Transport → Codec 
“I picked option 1. Base the next frame on its exiting state.”

�29

50 K
B

55 KBtarget frame size

Codec → Transport 
“Here’s two versions of the latest frame.”

�30

bet
ter

worse

70 K
B

25 KB
50 KB

5 KBtarget frame size

Transport → Codec 
“I cannot send any frames right now. Sorry, but discard them.”

�31

5 KBtarget frame size

Codec → Transport 
“Fine. Here’s two versions of the latest frame.”

�32

better

worse

45 KB

20 KB

50 KBtarget frame size

Transport → Codec 
“I picked option 1. Base the next frame on its exiting state.”

�33

50 KB

45 KB

target frame size

Goals for the measurement testbed

• A system with 
reproducible input video and 
reproducible network traces that runs 
unmodified version of the system-under-test.

• Target QoE metrics: per-frame quality and delay.

�36

barcoded video

video in/out (HDMI)
HDMI to USB camera

emulated
network

receiver
HDMI output

Sent Image
Timestamp: T+0.000s

Received Image
Timestamp: T+0.765s
Quality: 9.76 dB SSIM

Evaluation results: Verizon LTE Trace

�40

8

10

12

14

16

18

5007001000200050007000

Vi
de

o
Q

ua
lit

y
(S

S
IM

 d
B

)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)Skype

FaceTime

Hangouts

WebRTC

B
ett

er

Evaluation results: Verizon LTE Trace

�41

8

10

12

14

16

18

5007001000200050007000

Vi
de

o
Q

ua
lit

y
(S

S
IM

 d
B

)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)Skype

FaceTime

Hangouts

WebRTC

Status Quo

(conventional transport

and codec)

Evaluation results: Verizon LTE Trace

�42

8

10

12

14

16

18

5007001000200050007000

Vi
de

o
Q

ua
lit

y
(S

S
IM

 d
B

)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)Skype

FaceTime

Hangouts

WebRTC

Status Quo

(conventional transport

and codec)

Salsify (conventional codec)

Evaluation results: Verizon LTE Trace

�43

8

10

12

14

16

18

5007001000200050007000

Vi
de

o
Q

ua
lit

y
(S

S
IM

 d
B

)

Video Delay (95th percentile ms)

Salsify

WebRTC (VP9-SVC)Skype

FaceTime

Hangouts

WebRTC

Status Quo

(conventional transport

and codec)

Salsify (conventional codec)

Evaluation results: AT&T LTE Trace

�44

8

9

10

11

12

13

14

15

16

200300500700100020005000

Vi
de

o
Q

ua
lit

y
(S

S
IM

 d
B

)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)

Skype

FaceTime

Hangouts

Salsify

WebRTC

B
ett

er

Evaluation results: T-Mobile UMTS Trace

�45

9

10

11

12

13

14

350050007000100001400018000

Vi
de

o
Q

ua
lit

y
(S

S
IM

 d
B

)

Video Delay (95th percentile ms)

WebRTC (VP9-SVC)

Skype

FaceTime

Hangouts

Salsify

WebRTC

B
ett

er

WebRTC
(Chrome 65)

Improvements to video codecs may have reached the point of
diminishing returns, but changes to the architecture of video

systems can still yield significant benefits.

System 4: gg (laptop to lambda)

I Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv, Thomas Schmitz,
and KW, Secure serverless computing using dynamic information flow control, Proc. ACM
Program. Lang. 2, OOPSLA, Article 118 (November 2018).

I Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos Kozyrakis, Matei
Zaharia, and KW, From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of
Transient Functional Containers, in USENIX ATC 2019.

Cloud functions as a new computing substrate

I Rent 8,000 nodes in seconds (but some are flaky)

I Nodes can communicate directly at 600 Mbps (but some paths are flaky)

I Lots of jobs could take advantage of this substrate

I Big compilations (compiling Chromium takes 16 hours on one core)
I Software test suites (unit tests, integration tests)
I Ray-tracing (rendering one frame of a movie can take >12 hours)
I Video editing
I Parallel jobs on large videos

The gg intermediate representation

I Types: values and thunks
I Components

I raw inputs (“V” value name or “T” thunk name)
I forced inputs (“T” thunk name)
I outputs (named byte vector, may be another thunk)
I execution spec (e.g., Unix command line)

I Addressing scheme
I “V” + hash of a byte vector
I or “T” + hash of a thunk’s canonical representation + “#” + name of an output

I Can express

I Recursive fibonacci
I Y combinator
I Various everyday jobs

I Alpernas et al. (OOPSLA 2018): “Enforcing IFC policies is easy”

Compilation

Demo

Compiling inkscape (600 kLOC)

Tool Time Cost
single-core make 32m 34s
“make -j48” on a local 48-core machine 01m 40s
icecc to a warm 48-core EC2 machine 06m 51s $2.30/hr
icecc to a warm 384-core EC2 cluster 06m 57s $18.40/hr
gg to AWS Lambda 01m 27s 50 cents/run

Compiling Chromium (24,000 kLOC)

Tool Time
single-core make 15h 58m 20s
“make -j48” on a local 48-core machine 38m 11s
icecc to a warm 48-core EC2 machine 46m 01s
icecc to a warm 384-core EC2 cluster 42m 18s
gg to AWS Lambda 18m 55s

Tiny functions for lots of things. . .

I A little “functional-ish” programming goes a long way.

I It’s worth refactoring megamodules (codecs, TCP, compilers, machine learning)
using ideas from functional programming.

I The ability to name, save, and restore program states is powerful in its own right.

INFORMATION
SOURCE

MESSAGE

TRANSMITTER

SIGNAL RECEIVED
SIGNAL

RECEIVER

MESSAGE

DESTINATION

NOISE
SOURCE

Fig. 1—Schematic diagram of a general communication system.

(Y F) = (F (Y F))

(Y F) = (F (Y F))

(Y F) = (F (Y F))

(Y F) = (F (Y F))

(Y F) = (F (Y F))

(Y F) = (F (Y F))

(Y F) = (F (Y F))

(Y F) = (F (Y F))(Y F) = (F (Y F))(Y F) = (F (Y F))(Y F) = (F (Y F))

I Lepton: JPEG recompression

I ExCamera: video encoding with thousands of tiny tasks

I Salsify: real-time video with “functional” codec and transport

I gg: IR for “laptop to lambda” jobs with 8,000-way parallelism

