
f(x) = m * x + c
(Quasi-)Affine transformations for array access

Lennart Augustsson
Google Research

May 2019

Warning!

This talk contains nothing new.

Affine array operations
● Some array operations are purely structural, i.e., no computation involved

○ E.g., transpose, reshape, reverse, rotate

● A nice subclass of those are the affine ones, i.e., those that can be described
by an affine transformation on the index.

○ E.g., transpose, reverse

● An affine transformation can be described by
 f(x) = m * x + o
where x and o are vectors, and m is a matrix.

● The arrays considered here are APL style arrays (cf. Remora).
● Affine transformation is very popular in the polyhedral compilation community.

A dope vector (an old idea) describes the size and strides of an array.

Example array:

Memory layout:

Dope vector:

Dope vectors

Size Stride (m)

3 4 0

4 1

11 12 13 14

21 22 23 24

31 32 33 34

11 12 13 14 21 22 23 24 31 32 33 34

The index into a 2-dimensional array is a vector of length 2.

This is actually an instance of an affine transformation from 2-vectors to 1-vectors.

ix(i) = * i +

Example: i =

ix(i) = 4*1 + 1 * 3 + 0 = 7

Indexing with dope vectors

1

3

4 1 0

Transposition of a 2-dimensional array just swaps the indices.

becomes

This is also an affine transformation

transpose(i) = * i

Example, transposition with dope vectors

Size Stride

3 4 0

4 1

Size Stride

4 1 0

3 4

0 1

1 0

Instead of using n-dimensional arrays we will use a functional notation

ix :: A(3, 4) -> A(12)
ix (i0, i1) = (i0 * 4 + i1 * 1 + 0)

transpose :: A(4, 3) -> A(3, 4)
transpose (i0, i1) = (i1, i0)

f :: A(4, 3) -> A(12)
f = ix • transpose = (i1 * 4 + i0 * 1 + 0)

A change of notation

Size Stride

3 4 0

4 1

f :: A(i1, … in) -> A(o1, … om)
f(i1, … in) = (e1, … em)

e ::= i * k + … + k
 where k is an integer

Example:

bcast :: A(3, 2) -> A(2)
bcast (i0, i1) = (i1)

appears as

A change of notation

5 9 5 9

5 9

5 9

These functions, just like the affine transformations, have some nice properties:

● The functions are closed under composition
● There is a very simple normal form
● They are very simple and efficient to use in practice (ignoring caching issues)

Some properties

There is a surprising (to me) number of useful functions that are affine
transformations. (In reading these, beware contravariance!)

index i :: A(s2,…,sn) -> A(s1,s2,…,sn)
index i (i2,…,in) = (i,i2,…,in)

unflatten :: A(s1,…,sn) -> A(s1*…*sn)
unflatten (i1,i2,i3,…,ik) = ((i1*s2 + i2)*s3 … + ik)

transpose p :: A(s1,…,sn) -> A(sp1,…,spn)
transpose (i1,…,ik) = (iq1,iq2,…,iqk)
 where p is some permutation, and q its inverse

reverse j :: A(s1,…,sn) -> A(s1,…,sn)
reverse (i1,…,in) = (…,sj-1-ij,…)

Useful functions

Take every ti element of an array.

stride :: A(s1/t1,…,sn/tn) -> A(s1,…,sn)
stride (i1,…,in) = (i1*t1,…,in*tn)

Duplicate the values along some dimensions

broadcast b :: A(s1,…,sn) -> A(r1,…,rm)
broadcast (i1,…,in) = (j1,…,jm)

Where r1 ... rm is a subset s1 … sn and j1 … jm is a subset of i1 … in, but keeping
the order.

slice :: ...

Useful functions

Create windows of the k outermost dimensions (this smells of convolution).

window [w1,…,wk] ::
A(s1,…,sk,sk+1…,sn) ->
A(s1-w1+1,…,sk-wk+1,w1,…,wk,sk+1…,sn)

window (i1,…,ik,j1,…,jk,ik+1,…,in) = (i1+j1,…,ik+jk,ik+1,…,in)

window [3] =

Useful functions

a b c d e f a b c

b c d

c d e

d e f

Anyone having used APL is familiar with reshape. It’s the operation that changes
the dimensions of an array, but keeping the elements in their canonical order.

reshape :: A(s1,…,sn) -> A(r1,…,rm)
 Where s1*...*sn == r1*...rm

reshape =

There is no way to express this as an affine transformation.

Flies in the ointments

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4 5 6

7 8 9 10 11 12

A simpler function which is inexpressible

flatten :: A(s1*…*sn) -> A(s1,…,sn)

Using this function we have

reshape = flatten • unflatten

Flies in the ointments

To cover functions like flatten we extend the expression language for affine
transformations by also allowing division and modulus with a positive integer.

Properties:

● The functions are closed under composition.
● There is a normal form (no longer simple).
● They can be less efficient to use in practice.

Quasi-affine transformations

Flatten turns into a series of div and mod.

flatten :: A(12) -> A(3,4)
flatten (i1) = (i1 / 4, i1 % 4)

reshape :: A(2,6) -> A(3,4)
reshape (i1,i2) = ((i1*6+i2) / 4, (i1*6+i2) % 4)

Examples

Replicate (or truncate) data along each dimension

repl :: A(s1,…,sn) -> A(r1,…,rn)
repl (i1,…,in) = (i1 % r1, …, in % rn)

rotate r j :: A(s1,…,sn) -> A(s1,…,sn)
rotate (i1,…,in) = (…,(sj+r)%sj,…)

More functions

Most array operations are about enumerating the array elements in some way
(sequential, parallel, …). The affine transform and other concerns guides how to
do this in an efficient way.

● Loop fusion
● Loop tiling
● Loop interchange
● ...

And then...

This code performs 2-d convolution of an image using a single matrix multiply,
using a stride:

aconv2D :: forall sy sx y x ky kx c f a ty tx . (_) =>
 Arr [y, x, c] a ->
 Arr [ky, kx, c, f] a ->
 Arr [(y-ky+1) // sy, (x-kx+1) // sx, f] a
aconv2D i k =
 let i' :: Arr [ty * tx, ky * kx * c] a
 i' = imageP @sy @sx @ky @kx i
 k' :: Arr [ky * kx * c, f] a
 k' = reshape k
 r :: Arr [ty * tx, f] a
 r = matMul i' k'
 r' :: Arr [ty, tx, f] a
 r' = reshape r
 in r'

A real example

Munging the image:

imageP ::
 forall sy sx ky kx y x c a ty tx .
 (ty ~ ((y-ky+1) // sy),
 tx ~ ((x-kx+1) // sx),
 _) =>
 Arr [y, x, c] a ->
 Arr [ty * tx, ky * kx * c] a
imageP i =
 let w :: Arr [y-ky+1, x-kx+1, ky, kx, c] a
 w = window @[ky, kx] i
 s :: Arr [ty, tx, ky, kx, c] a
 s = stride @[sy, sx, 1, 1, 1] w
 r :: Arr [ty * tx, ky * kx * c] a
 r = reshape s
 in r

A real example

Looking at a particular example:

image :: Arr [289, 289, 3] Int -- stored as a vector of size 250563

image’ :: Arr [20164, 147] Int
image’ = imageP @2 @2 @7 @7 image

The affine transform:

f :: (20164, 147) -> (250563)
f (d0, d1) =
 (d1 / 21 * 867 + (d1 + d0 * 147) / 20874 * 1734 +
 d0 % 142 * 6 + d1 / 3 % 7 * 3 + d1 % 3)

A real example

The affine transform:

f :: (20164, 147) -> (250563)
f (d0, d1) =
 (d1 / 21 * 867 + (d1 + d0 * 147) / 20874 * 1734 +
 d0 % 142 * 6 + d1 / 3 % 7 * 3 + d1 % 3)

This rather ugly affine transform can actually access the elements in order in a
nice way:

for d0 = 0 to 246228 by 1734 -- 142 iterations
 for d1 = 0 to 852 by 6 -- 142 iterations
 for d2 = 0 to 6069 by 867 -- 7 iterations
 for d3 = 0 to 21 by 1 -- 21 iterations
 v[d0 + d1 + d2 + d3]

A real example

Given that all memory access go through an affine transform we don’t have to
allocate linear segments of memory for an array.

● Record concatenation is (sometimes) possible without moving data.
● Useful for allocation in multi-dimensional memories.

Memory allocation

Quasi-affine transformations are simple and very useful for man structural array
operations.

Arrays are awesome!

Conclusions

