Selective Applicative Functors

Andrey Mokhov, Georgy Lukyanov, Simon Marlow, Jeremie Dimino

WG 2.8 May 2019

Motivating example

e ‘read a string, If it Is ‘ping then print ‘pong’,
otherwise do nothing”

pingPongM :: I0 ()
pingPongM =

getlLine >>= \s ->
if s == "ping" then putStrLn "pong" else pure ()

What if we want to analyse it?

pingPongM :: I0 ()
pingPongM =

getlLine >>= \s ->
if s == "ping" then putStrLn "pong" else pure ()

e Sometimes it's useful to be able to ask “what are all the
effects this computation might have?”

e \We could use this to
o pre-allocate resources
o speculate execution, parallelism
o (examples coming later)

But we cannot do that here!

pingPongM :: 10 ()
pingPongM =

Only known at runtime

getlLine >>= \s ->
if s == "ping" then putStrLn "pong" else pure ()

In general, Monad makes this impossible

class Monad f where
return :: a -> t 3

(>>=) :: fa->(a->fb) ->fhb

e \We cannot know a until we have peformed f a
e SO0 we cannot analyse the computation to find all its
(potential) effects, we can only run it.

But let’s take a simpler example

whenM :: Monad m => m Bool ->m () -> m ()

first execute this...

But let’s take a simpler example

whenM :: Monad m => m Bool ->m () -> m ()

/

first execute this...
:) If it returned True, :

execute this,

. otherwise don't y

Rewrite our example using whenM

whenM :: Monad m => m Bool ->m () ->m ()

We will need fmap:

class Functor f where
fmap :: (a ->b) ->f a -> f b

Now, to get 10 Bool:

fmap (== “ping”) getlLine :: IO Bool

Rewrite our example using whenM

whenM :: Monad m => m Bool ->m () ->m ()

pingPongM :: 10 ()
pingPongM =
getlLine >>= \s ->
if s == "ping" then putStrLn "pong" else pure ()

pingPongM :: I0 ()
pingPongM =
whenM (fmap (== “ping”) getlLine) (putStrLn "pong")

But why is this better?

e L ook at the definition of whenM:

whenM :: Monad m => m Bool ->m () ->m ()

whenM x y = x >>= \b -> if b then y else return ()

But why is this better?

e L ook at the definition of whenM:

whenM :: Monad m => m Bool ->m () ->m ()

whenM x y = x >>= \b -> if b then y else return ()

\
Still a runtime value, but

it only has two possible

values
\ /

e We have some hope of statically analysing this code, because
we can enumerate all the possibilities for b

But why is this better?

e L ook at the definition of whenM:

whenM :: Monad m => m Bool ->m () ->m ()

whenM x y = x >>= \b -> if b then y else return ()

\
Still a runtime value, but

it only has two possible

values
\ /

e We have some hope of statically analysing this code, because
we can enumerate all the possibilities for b
e But we can’t do it in this form, using >>=

But walit...

e Don't we already have an abstraction that...
o IS weaker than Monad
o admits static analysis

Applicative Functors: 2007, Nottingham/London

FUNCTIONAL PEARL
[dioms: applicative programmaing with effects

CONOR MCBRIDE
University of Nottingham

ROSS PATERSON
City University, London

Abstract

In this paper, we introduce ldioms—an abstract characterisation of an applicative style
of effectful programming, weaker than Monads and hence more widespread. Indeed, it is
the ubiquity of this programming pattern which drew us to the abstraction. We shall take
the same course in this paper, introducing the applicative pattern by diverse examples,
then abstracting it to define the ldiom type class and associated laws. We compare this
abstraction with monoids, monads and arrows, and identify the categorical structure of
idioms.

Applicative Functors

class Applicative f where
pure :: a -> f a

(<*¥>) :: £ (a ->b) ->f a->fb

We can execute computations f (a -> b) and f a in parallel (if we like).
All effects are statically visible and can be examined before execution.

X Computations must be independent, hence no conditional execution.

Towards a new intermediate abstraction

Applicative
functors

777

Monads

Towards a new intermediate abstraction

Applicative
functors

777

Monads

Independent effects & parallelism

N

EAN

(%) =3

fa->fb ->f (a,b)

X

Towards a new intermediate abstraction

Applicative
functors

777

Monads

Independent effects & parallelism

Static visibility & analysis of effects
/N

N\

getEffects ::

getPure .. £ a -> Maybe a
fa->|[f ()]

Towards a new intermediate abstraction

Applicative

777
functors

Monads

Independent effects & parallelism

Static visibility & analysis of effects

Dynamic generation of effects
/N

N\

greeting = getlLine >>= \name -> putStrLn ("Hello

++ name) I

Towards a new intermediate abstraction

Applicative

777 Monads
functors

Independent effects & parallelism

Static visibility & analysis of effects

Dynamic generation of effects

Conditional execution of effects X
N

N\

pingPongM = whenM (fmap (=="ping") getlLine) (putStrLn "pong") l

Towards an intermediate abstraction

Applicative
functors

777

Monads

Independent effects & parallelism

L)

X

Ad-hoc speculative execution combinators from the Haxl library:

pAnd :: f Bool -> f Bool -> f Bool
pOr :: £ Bool -> f Bool -> f Bool
CUTTUTror1al é?j—fﬂl)ﬂ UT TITCTCILS Y o)
A

Speculative execution of effects

X

Towards an intermediate abstraction

Applicative
functors

Selective
functors

Monads

Independent effects & parallelism

Static visibility & analysis of effects

Dynamic generation of effects

Conditional execution of effects

Speculative execution of effects

Towards an intermediate abstraction

Applicative
functors

Selective
functors

Monads

Independent effects & parallelism

Static visibility & analysis of effects

Dynamic generation of effects

Conditional execution of effects

Speculative execution of effects

Selective Applicative Functors

e Goal: an abstraction that allows
o static analysis, parallelism, speculative execution
o conditional effects

Selective Applicative Functors

e Goal: an abstraction that allows
o static analysis, parallelism, speculative execution
o conditional effects

class Applicative ¥ => Selective f where

select :: f (Either a b) -> f (a -> b) -> f b

The first computation is used to select what happens next:
*Left a: you must execute the second computation to produce a b;
*Right b: you may skip the second computation and return the b.

Selective Applicative Functors

class Applicative f => Selective f where

select ::

We can speculatively execute both computations in parallel (if we
like).

All effects are statically visible and can be examined before
execution.

A limited form of dependence, sufficient for conditional execution.

Why this particular formulation?

class Applicative f => Selective f where

select :: f (Either a b) -> f (a -> b) -> f b

e Parametricity tell us what select can do
o whenM can be implemented wrongly (unlessM)

But we love operators, so

(<*?) :: Selective f => f (Either a b) -> f (a -> b) -> f b

(<*?) = select

Example

pingPongS :: I0 ()
pingPongS = whenS (fmap (=="ping") getlLine) (putStrLn "pong")

whenS :: Selective f => f Bool -> £ () -> f ()
whenS X y = selector <*? effect

where

selector :: f (Either () ())

selector = bool (Right ()) (Left ()) <$> x

effect :: £ (() -> ())
effect = const <$> y

What interesting combinators can we build?

branch :: Selective ¥ => ¥ (Either a b) -> f (a -> ¢c) -> f (b -> ¢c) -> f C

Define branch in terms of select...
select :: Selective f => f (Either p gq) -> f (p -> gq) -> f ¢

What interesting combinators can we build?

branch :: Selective ¥ => ¥ (Either a b) -> f (a -> ¢c) -> f (b -> ¢c) -> f C

Define branch in terms of select...
select :: Selective f => f (Either p gq) -> f (p -> gq) -> f ¢

branch x 1 r = fmap (fmap Left) x <*? fmap (fmap Right) 1 <*? r

More combinators

ifS :: Selective f => f Bool -> f a -> f a -> f a
ifS x t e = branch (bool (Right ()) (Left ()) <$> x) (const <$> t) (const <$> e)

(<||>) :: Selective f => f Bool -> f Bool -> f Bool
a <||> b = ifS a (pure True) b

(<&&>) :: Selective f => f Bool -> f Bool -> f Bool
a <& &> b = ifS a b (pure False)

anyS :: Selective f => (a -> f Bool) -> [a] -> f Bool
anyS p = foldr ((<]||>) . p) (pure False)

allS :: Selective f => (a -> f Bool) -> [a] -> f Bool
allS p = foldr ((<&&>) . p) (pure True)

Every Monad is Selective

selectM :: Monad m => m (Either a b) ->m (a -> b) ->m b
selectM x y = X >>= \e ->
case e of

Left a -> (%$a) <$> vy
Right b -> return b

Every Monad is Selective

selectM :: Monad m => m (Either a b) ->m (a -> b) ->m b
selectM x y = X >>= \e ->
case e of

Left a -> (%$a) <$> vy
Right b -> return b

e In fact, select = selectM Is the definition of the

semantics of select for a Monad.
o (rather like <*>
for a Monad)

ap defines the semantics of Applicative

Every Monad is Selective

selectM :: Monad m => m (Either a b) ->m (a -> b) ->m b
selectM x y = X >>= \e ->
case e of

Left a -> (%$a) <$> vy
Right b -> return b

e Some Monads may choose to implement select

more efficiently
o e.g. Haxl uses parallelism for <*>, speculation for
select

Every Applicative is Selective

selectA :: Applicative f => ¥ (Either a b) -> f (a -> b) -> £ b

selectA x y = (\e f -> either f id e) <$> x <*> y

\

Always executes y
- /

e This is a valid implementation of select,
o but may not be the only one.

e Summary:
o select = selectM — conditional effects
o select = selectA — unconditional effects

Data validation example

data Validation e a = Failure e | Success a2

The idea Is that we can
traverse a structure and
report multiple errors

instance Semigroup e => Applicative (Validation e) where

pure = Success
Failure el <*> Failure e2 = Failure (el <> e2)
Failure el <*> Success Failure el

Success <*> Faillure e?2 Failure e2

Success £ <*> Success a Success (f a)

Data validation example

data Validation e a = Failure e | Success a2

instance Semigroup e => Selective (Validation e) where
select (Success (Right b)) = Success b

select (Success (Left a)) f = (%$a) <$> f
select (Failure e) = Failure e

Accumulates errors In
both computations

Data validation example

data Validation e a = Failure e | Success a2

instance Semigroup e => Selective (Validation e) where
select (Success (Right b)) = Success b
select (Success (Left a)) f = (%$a) <$> f

select (Failure e) = Failure e

Discard errors on the
right if the condition
failed

e Nelther selectA nor selectM
e Cannot be a Monad!

mkAddress
:: Selective f
 Street
f City
+ PostCode
f Country
+ Address

mkAddress street city postcode country =
Address

<$>
<*>
<*>
<*>

street

city

ifS (hasPostCode <$> country) (Just <$> postcode) (pure Nothing)
country

Laws

e [here are identity, distributive and associative laws
e Non-laws:
o pure (Right x) <*? y == pure X
o pure (Left x) <*? y == ($x) <$> vy
o these would rule out over-approximation and
under-approximation of effects
e But: Monads must satisfy select = selectM

Selective and Haxl|

What is Haxl?

e Solves the following problem:

o | want to write code that works with remote data
o | want data-fetching to happen in parallel where possible
o automatically, without me having to do anything

e |n use at scale at Facebook for writing anti-abuse code

e |[n Haxl:
o Applicative = parallel
o Monad = sequential

e €.J. mapM fetch things will fetch things in parallel

Conditionals

e \We found short-cutting “and” and “or” useful:

(.]1]), (.&&) :: Haxl Bool -> Haxl Bool -> Haxl Bool

a .&& b = do
X <- 3
1f X then b else return False

e Particularly in cases like

if simpleCondition .&& complexCondition then .. else ..

e But sometimes it's not easy to know the best ordering

complexCondition .&& otherComplexCondition

e ... especially when the number of conditions is large,
and/or changes often
e Ve could do it In parallel:

and [complexCondition, otherComplexCondition]

e But this leaves some performance on the table:
o If either condition returns False early, we don't need
to finish evaluating the other one.

Parallel boolean operators

pAnd, pOr ::

e These are semantically the same as (.&&), (.||)
o but evaluate both arguments in parallel
o and bail out early if the answer is known

e But iIf we define

instance Selective Hax]l where

select = ...

e Now

pAnd = (<&&>)

pOr = (<[]>)

e And the rest of the selective combinators will now be
speculative/parallel.

But there’s a subtle problem...

e select will always execute its first argument to
completion

e whereas we want pAnd to abort the first argument if the
second argument returns False
o e.g. (someFetch >>= x) "pAnd return False
o should never execute x

Select is not precisely what we want

e But we can define a symmetric alternative:

biselect
:: Selective T
=> f (Either a b)

-> ¥ (Either a c)
-> ¥ (Either a (b,c))

e Solution: Add biselect as a method in Selective
e Instances can override biselect if they want

Generalisation

VWe have:
ifS :: Selective f => f Bool -> f+ a -> f+ a -> f a

Alternatively:
bindBool :: Selective f => f Bool -> (Bool -> f a) -> f a

Generalisation

VWe have:
ifS :: Selective f => f Bool -> f+ a -> f+ a -> f a

Alternatively:
bindBool :: Selective f => f Bool -> (Bool -> f a) -> f a

Moreover:

bindS
.. (Selective f, Bounded a, Enum a, Eq a)

=>f a ->(a->fb) ->fb

Look familiar?

bindS

bindS

.. (Selective f, Bounded a, Enum a, Eq a)
=>f a ->(a->fb) ->fb

e Implementation in terms of select could
sequentially check all the possible values of a

e But for a monad, bindS = (>>=)
o suggests that bindS should be a method

More applications

e Build systems:

o extract all build dependencies before execution, with

conditional execution
e Modelling processor instructions:

o Categorising instructions: Functor (e.g. increment), Applicative
(arithmetic), Selective (branching), Monad (indirect memory
access)

e Parsing combinators:
o Use Selective instead of Alternative to avoid backtracking

Conclusions

e Selective identifies a useful point in the design space
between Applicative and Monad

e Combines the benefits of Applicative (static analysis,
parallelism, speculation) with limited conditional
support

Example: a blog engine

getPostIds :+ Haxl [PostId]

getPostContent :: Postld -> Haxl PostContent

| want to fetch all the content of all the posts:

getAllPostsContent :: Haxl [PostContent]

getAllPostsContent = getPostlds >>= mapM getPostContent

e Just use standard monadic combinators
® mapM getPostContent should happen in parallel

Batching

Indeed, not just parallel, but batching multiple
requests where possible:

Unbatched Batched

SELECT content FROM posts SELECT content FROM posts

WHERE postid = 1id1l WHERE postid IN {idl, id2, ...

SELECT content FROM posts
WHERE postid = 1d2

Implementation

This Is the
result of a

data Result 2a computation

= Done a
| Blocked (Seq BlockedRequest) (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

Implementation

Done indicates

that we have
data Result a finished

= Done a
| Blocked (Seq BlockedRequest) (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

Implementation

Blocked indicates that the

data Result 2 computation requires this

data.
= Done a3

| Blocked (Seq BlockedRequest) (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

Implementation

data Result a

Haxl is in 10,
= Done 3 because we
| Blocked (Seq BlockedRequest) (Haxl a) use IORefs to

store results

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

instance Monad Haxl where
return a = Haxl $ return (Done a)

Haxl m >>= k = Haxl $ do
r<-m
case r of
Done a -> unHaxl (k a)

Blocked br ¢ -> return (Blocked br (c >>= k))

If m blocks with continuation c, the
continuation for m >>=Kis ¢ >>=Kk

Haxl works by having a special Applicative instance

instance Applicative Haxl where
pure = return

Haxl f <*> Haxl x = Haxl $ do

' <- f
X' <- X
case (f',x"') of
(Done g, Done vy) -> return (Done (g vy))
(Done g, Blocked br ¢) -> return (Blocked br (g <$> ¢))
(Blocked br c, Done vy) -> return (Blocked br (c <*> return y))
(Blocked brl c, Blocked br2 d) -> return (Blocked (brl <> br2) (c <*> d))

e when we use <*> we get parallelism
e when we use >>= we get sequentiality

Direct implementation

pAnd :: Haxl Bool -> Haxl Bool -> Haxl Bool
pAnd (Haxl a) (Haxl b) = Haxl $ do
X <- a
case x of
Done False -> return False

Done True -> b
Blocked bx cx -> do

y <- a
case y of
Done False -> return False
Done True -> return X
Blocked by cy ->
Blocked (bx <> by) (cx "pAnd cy)

e \When we say this is “parallel”, what do we mean?
o data-fetches are done In parallel where possible
o If both sides get blocked, we do their fetches together
o NOT that we do the computation in parallel

Using Selective

instance Selective Haxl where
select (Haxl x) (Haxl f) = Haxl $ do
rx <- X
case rx of
Done (Right b) -> return (Done b)

Done (Left a) -> unHaxl (($a) <$> Haxl f)
Blocked bx c -> do
rf <- f
case rf of
Done ¥ -> unHaxl (either f id <$> c)
Blocked by d ->
return (Blocked (bx <> by) (select c d))

What interesting combinators can we build?

branch :: Selective ¥ => ¥ (Either a b) -> f (a -> ¢c) -> f (b -> ¢c) -> f C

Define branch in terms of select...
select :: Selective f => f (Either p gq) -> f (p -> gq) -> f ¢

branch X 1 r = select x 1

~

Would make b ==c¢
N Y,

What interesting combinators can we build?

branch :: Selective ¥ => ¥ (Either a b) -> f (a -> ¢c) -> f (b -> ¢c) -> f C

Define branch in terms of select...
select :: Selective f => f (Either p gq) -> f (p -> gq) -> f ¢

select
(fmap (either Left (Right . Left)) x)
(fmap (\f -> Right . f) 1)

What interesting combinators can we build?

branch :: Selective ¥ => ¥ (Either a b) -> f (a -> ¢c) -> f (b -> ¢c) -> f C

Define branch in terms of select...
select :: Selective f => f (Either p gq) -> f (p -> gq) -> f ¢

select (

select
(fmap (either Left (Right . Left)) x)
(fmap (\f -> Right . f) 1)

) r

What interesting combinators can we build?

branch :: Selective ¥ => ¥ (Either a b) -> f (a -> ¢c) -> f (b -> ¢c) -> f C

Define branch in terms of select...
select :: Selective f => f (Either p gq) -> f (p -> gq) -> f ¢

branch x 1 r =
select (

select
(fmap (cither Loft (Right | Lott))) fmap (fmap Left)
(fmap (\f -> Right . f) 1)

) r

branch :: Selective ¥ => ¥ (Either a b) -> f (a -> ¢c) -> f (b -> ¢c) -> f C

What interesting combinators can we build?

Define branch in terms of select...

select :: Selective f => f (Either p gq) -> f (p -> q) -> f g

branch x 1 r =
select (

select

/-CW\'JY\
\ "

/-CM"\V'\
\ I 1TERA s

) r

e e 1

Da~ch+
l*bll A

N |l AL+ /DA~
| [| - \I\-I-bll\- [}

£\ 1)\
° Y A4

LofFt))) fmap (fmap Left)
fmap (fmap Right)

