
Coinductive de�nitional interpreters
using the delay monad

Xavier Leroy

Collège de France and Inria, Paris

IFIP WG 2.8, May 2019, Bordeaux

1



Mechanized semantics for little languages. . .

. . . are naturally expressed in denotational style.

Fixpoint den (e: expr) : Z :=

match e with

| Const n => n

| Add e1 e2 => den e1 + den e2

| Mul e1 e2 => den e1 * den e2

end.

or, more realistically:

Fixpoint den (e: expr) : mon machine_integer :=

match e with

| Const n => ret n

| Add e1 e2 =>

bind (den e1) (fun v1 => bind (den e2) (fun v2 => madd v1 v2)

| Mul e1 e2 =>

bind (den e1) (fun v1 => bind (den e2) (fun v2 => mmul v1 v2)

end.

2



Mechanized semantics for little languages. . .

. . . are naturally expressed in denotational style.

Fixpoint den (e: expr) : Z :=

match e with

| Const n => n

| Add e1 e2 => den e1 + den e2

| Mul e1 e2 => den e1 * den e2

end.

or, more realistically:

Fixpoint den (e: expr) : mon machine_integer :=

match e with

| Const n => ret n

| Add e1 e2 =>

bind (den e1) (fun v1 => bind (den e2) (fun v2 => madd v1 v2)

| Mul e1 e2 =>

bind (den e1) (fun v1 => bind (den e2) (fun v2 => mmul v1 v2)

end.

2



Mechanized semantics for non-normalizing languages

No such simple translation to the meta-language.

Usual approach: consider �nite pre�xes of possibly-in�nite executions.
Reduction semantics.
Scott domains.
De�nitional interpreters with “fuel”.

This talk: ideas for an alternate approach, based on a
corecursive de�nitional interpreter.

3



Partial computations in type theory
(V. Capretta, General recursion via coinductive types, LMCS(1), 2005)

CoInductive delay {A: Type} : Type :=

| now: A -> delay A

| later: delay A -> delay A.

delay A represents computations that return a value of type A
or diverge.

The later constructor represents one step of computation.

With an inductive de�nition of delay, terms of delay A are
later(· · · (later(now(v))) · · · ). We’re just counting the number of
computation steps.

With the coinductive de�nition of delay, we can also represent in�nitely
many computation steps, that is, a nonterminating computation.

4



Partial computations in type theory
CoInductive delay {A: Type} : Type :=

| now: A -> delay A

| later: delay A -> delay A.

Here is the canonical diverging computation at type A:
CoFixpoint bottom (A: Type) : delay A := later (bottom A).

Terminating computations are characterized by an inductive predicate,
diverging computations by a coinductive predicate.

Inductive terminates {A: Type} : delay A -> A -> Prop :=

| terminates_now:

forall v, terminates (now v) v

| terminates_later:

forall a v, terminates a v -> terminates (later a) v.

CoInductive diverges {A: Type} : delay A -> Prop :=

| diverges_later:

forall a, diverges a -> diverges (later a).

5



Partial computations in type theory
CoInductive delay {A: Type} : Type :=

| now: A -> delay A

| later: delay A -> delay A.

Here is the canonical diverging computation at type A:
CoFixpoint bottom (A: Type) : delay A := later (bottom A).

Terminating computations are characterized by an inductive predicate,
diverging computations by a coinductive predicate.

Inductive terminates {A: Type} : delay A -> A -> Prop :=

| terminates_now:

forall v, terminates (now v) v

| terminates_later:

forall a v, terminates a v -> terminates (later a) v.

CoInductive diverges {A: Type} : delay A -> Prop :=

| diverges_later:

forall a, diverges a -> diverges (later a).

5



General recursion

We can de�ne arbitrary general recursive functions with result type
delay A, provided that all recursive calls are guarded by a later

constructor.

8 Fixpoint modulus (a b: N) : N :=

if a <? b then a else modulus (a - b) b.

8 CoFixpoint modulus (a b: N) : delay N :=

if a <? b then now a else modulus (a - b) b.

4 CoFixpoint modulus (a b: N) : delay N :=

if a <? b then now a else later (modulus (a - b) b).

6



Reminder: recursion vs. corecursion

Recursive function de�nition (Fixpoint):
Argument has an inductive type.
f x can recursively call f y provided y is a strict sub-term of x.

Corecursive function de�nition (CoFixpoint):
Result has a coinductive type.
f x can recursively call f y provided f y is a strict sub-term of f x.

(A.k.a. the productivity condition: the head constructor of f x can always
be computed in �nite time.)

7



General recursion

CoFixpoint modulus (a b: N) : delay N :=

if a <? b then now a else later (modulus (a - b) b).

We can reason about termination or divergence of the function a�er
we’ve de�ned it.

Theorem modulus_Euclid:

forall a b, b > 0 ->

exists q r, terminates (modulus a b) r ∧ r < b ∧ a = b*q+r.

Theorem modulus_divergence:

forall a, diverges (modulus a 0).

8



General recursion

Another example where we literally have no clue when the function
terminates, yet we can de�ne it.

CoFixpoint Collatz (n: N): delay unit :=

if n =? 1 then now tt

else if N.even n then later (Collatz (n / 2))

else later (Collatz (3 * n + 1)).

Conjecture Collatz_1:

forall n, n >= 1 -> terminates (Collatz n) tt.

Conjecture Collatz_2:

exists n, n >= 1 ∧ diverges (Collatz n).

9



Observational equivalence

A constructive de�nition of equitermination:

CoInductive equi {A: Type} : delay A -> delay A -> Prop :=

| equi_terminates: forall x y v,

terminates x v -> terminates y v -> equi x y

| equi_later: forall x y,

equi x y -> equi (later x) (later y).

Classically equivalent to

(∃v, terminates x v ∧ terminates y v) ∨ (diverges x ∧ diverges y)

but constructively stronger. (No need to “know in advance” whether both
computations diverge or both terminate.)

10



The delay monad
delay is a monad, with now as the unit operation, and the bind
operation being the sequencing of two computations:

CoFixpoint bind {A B: Type}
(a: delay A) (f: A -> delay B) : delay B :=

match a with

| now v => later (f v)

| later a’ => later (bind a’ f)

end.

We have the expected properties of sequencing, e.g. bind a f diverges
i� a diverges or a terminates on v and f v diverges.

The three monadic laws hold, up to equi:

equi (bind (now v) f) (f v)

equi (bind a now) a

equi (bind (bind a f) g) (bind a (fun x => bind (f x) g))

11



A de�nitional interpreter in the delay monad

Consider lambda-calculus with constants:

Inductive term : Type :=

| Const (n: Z)

| Var (x: var)

| Lam (x: var) (a: term)

| App (a b: term).

Can we de�ne a de�nitional interpreter as a function

CoFixpoint eval (a: term) : delay (option term) := ...

(option because terms can get stuck).

12



Productivity problem

CoFixpoint eval (a: term) : delay (option term) :=

match a with

| Const n => now (Some (Const n))

| Var x => now None

| Lam y b => now (Some (Lam y b))

| App b c =>

8 bind (eval b) (fun r =>

match r with

| Some (Lam x d) => eval (subst x c d)

| _, _ => now None

end))

end.

eval b is not a strict sub-term of eval a. Hence not productive!

13



The free monad to the rescue!
(A use of the trick described by N. A. Danielsson in Beating the Productivity Checker Using
Embedded Languages, 2010.)

Work around the productivity problem by making the problematic
function bind into a constructor of a coinductive type.

This coinductive type has 3 constructors corresponding to the 3
operations of the delay monad: ret, bind, later.

CoInductive mon: Type -> Type :=

| Ret: forall {A: Type}, A -> mon A

| Later: forall {A: Type}, mon A -> mon A

| Bind: forall {A B: Type}, mon A -> (A -> mon B) -> mon B

A.k.a. the free monad (plus later).

A.k.a. an AST for Moggi’s monadic metalanguage (plus later).

14



Corecursive functions in the free monad

CoFixpoint eval (a: term) : mon (option term) :=

match a with

| Const n => Ret (Some (Const n))

| Var x => Ret None

| Lam y b => Ret (Some (Lam y b))

| App b c =>

4 Bind (eval b) (fun r =>

match r with

| Some (Lam x d) => eval (subst x c d)

| _, _ => Ret None

end))

end.

This function is productive!

15



From free monad to computations

A term of type mon A describes a computation of type delay A.

CoFixpoint run {A: Type} (m: mon A) : delay A :=

match m with

| Ret v => now v

| Later m => later (run m)

| Bind (Ret v) f => later (run (f v))

| Bind (Later m) f => later (run (Bind m f))

| Bind (Bind m f) g =>

later (run (Bind m (fun x => Bind (f x) g)))

end.

This function is productive!!

Note the use of the �rst and third monadic laws “on the �y”.

16



What?

term

mon (option term)

delay (option term)

eval 4

run 4

8 eval

Productivity is a syntactic approximation. It is not compositional.

17



Properties of run as a denotational semantics

run is actually a denotational semantics for Moggi’s monadic
metalanguage, mapping syntax (type mon A) to meanings (type delay A).

We expect run to satisfy a number of equivalences:

4 later denotation equi (run (Later m)) (later (run m))

? bind denotation equi (run (Bind m f))

(bind (run m) (fun x => run (f m))

4 1st monadic law

? 2nd monadic law

4 3rd monadic law

(? means I could not prove it, not that it is false.)

18



The Monadic Abstract Machine (MAM)
An alternative to run, using a continuation explicitly represented as a list
of functions A -> mon B.

Inductive continuation: Type -> Type -> Type :=

| K0: forall {A: Type}, continuation A A

| Kbind: forall {A B C: Type} (f: A -> mon B) (k: continuation B C),

continuation A C.

CoFixpoint mam {A B: Type} (m: mon A) (k: continuation A B): delay B :=

match m with

| Ret v =>

match k with

| K0 => now v

| Kbind f k => later (mam (f v) k)

end v

| Later m =>

later (mam m k)

| Bind m f =>

later (mam m (Kbind f k))

end.

19



A run based on the MAM

Definition runk {A: Type} (m: mon A) : delay A := mam m K0.

Enjoys the expected properties:

4 later denotation equi (runk (Later m)) (later (runk m))

4 bind denotation equi (runk (Bind m f))

(bind (runk m) (fun x => runk (f m))

4 1st monadic law

4 2nd monadic law

4 3rd monadic law

? same denotations equi (run m) (runk m)

4 equi (run (Bind m Ret)) (runk m)

20



Back to the de�nitional interpreter

Definition dinterp (a: term): delay (option term) := runk (eval a).

Satis�es some classic properties of denotational semantics, e.g.
compatibility with reductions:

If a→β a′ then equi (dinterp a) (dinterp a′).

Is executable to some extent:

Fixpoint exec {A: Type} (x: delay A) (n: nat) : option A :=

match x, n with

| now v , _ => Some v

| _ , O => None

| delay x, S n => exec x n

end.

Definition dexec (a: term) (nsteps: nat) :=

exec (dinterp a) nsteps.

21



Is this a good approach?

Unclear at this point; possibly not.

+ A nice �avor of denotational semantics.

+ Executability (to some extent).

– Heavy reasoning modulo the equi relation.

– Proving that a term diverges requires lower-level reasoning.
E.g. dinterp(δ δ) = later(· · · (dinterp(δ δ)) · · · )
not just equi (dinterp(δ δ)) (dinterp(δ δ)).

22


