
Stacked Borrows:
An Aliasing Model for Rust
(Work in Progress)

Ralf Jung, Hai Dang, and Derek Dreyer
MPI-SWS, Germany

WG2.8, Bordeaux, May 2019

1



Rust – Mozilla’s replacement for C/C++

A safe & modern systems PL

• First-class functions
• Polymorphism/generics
• Algebraic datatypes
• Traits ≈ Type classes
• Control over resource management

(e.g., memory allocation and data layout)
• Strong type system guarantees:
• Type & memory safety; data-race freedom

Goal of RustBelt project:
Prove safety of Rust and its

standard library.

That requires defining what Rust is!

2



Rust – Mozilla’s replacement for C/C++

A safe & modern systems PL
• First-class functions
• Polymorphism/generics
• Algebraic datatypes
• Traits ≈ Type classes

• Control over resource management
(e.g., memory allocation and data layout)
• Strong type system guarantees:
• Type & memory safety; data-race freedom

Goal of RustBelt project:
Prove safety of Rust and its

standard library.

That requires defining what Rust is!

2



Rust – Mozilla’s replacement for C/C++

A safe & modern systems PL
• First-class functions
• Polymorphism/generics
• Algebraic datatypes
• Traits ≈ Type classes
• Control over resource management

(e.g., memory allocation and data layout)

• Strong type system guarantees:
• Type & memory safety; data-race freedom

Goal of RustBelt project:
Prove safety of Rust and its

standard library.

That requires defining what Rust is!

2



Rust – Mozilla’s replacement for C/C++

A safe & modern systems PL
• First-class functions
• Polymorphism/generics
• Algebraic datatypes
• Traits ≈ Type classes
• Control over resource management

(e.g., memory allocation and data layout)
• Strong type system guarantees:
• Type & memory safety; data-race freedom

Goal of RustBelt project:
Prove safety of Rust and its

standard library.

That requires defining what Rust is!

2



Rust – Mozilla’s replacement for C/C++

A safe & modern systems PL
• First-class functions
• Polymorphism/generics
• Algebraic datatypes
• Traits ≈ Type classes
• Control over resource management

(e.g., memory allocation and data layout)
• Strong type system guarantees:
• Type & memory safety; data-race freedom

Goal of RustBelt project:
Prove safety of Rust and its

standard library.

That requires defining what Rust is!

2



Rust – Mozilla’s replacement for C/C++

A safe & modern systems PL
• First-class functions
• Polymorphism/generics
• Algebraic datatypes
• Traits ≈ Type classes
• Control over resource management

(e.g., memory allocation and data layout)
• Strong type system guarantees:
• Type & memory safety; data-race freedom

Goal of RustBelt project:
Prove safety of Rust and its

standard library.
That requires defining what Rust is!

2



Rust type system
1-slide summary

Aliasing
+

Mutation

3



Rust type system
1-slide summary

Aliasing
+

Mutation
3



Rust enforces this via ownership & borrowing:

Aliasing
+

Mutation

1. Full ownership: T
+ mutation, deallocation
- aliasing

2. Mutable reference: &mut T
(borrowed)
+ mutation
- aliasing, deallocation

3. Shared reference: &T
(borrowed)
+ aliasing
- mutation, deallocation

Rust’s reference types provide
strong aliasing information.

The optimizer should exploit that!

4



Rust enforces this via ownership & borrowing:

Aliasing
+

Mutation

1. Full ownership: T
+ mutation, deallocation
- aliasing

2. Mutable reference: &mut T
(borrowed)
+ mutation
- aliasing, deallocation

3. Shared reference: &T
(borrowed)
+ aliasing
- mutation, deallocation

Rust’s reference types provide
strong aliasing information.

The optimizer should exploit that!

4



Aliasing guarantees: Example #1

fn test_unique(x: &mut i32) -> i32 {
*x = 42;
// unknown_function_1 cannot have an alias to x
unknown_function_1();
return *x; // must return 42

}

5



Aliasing guarantees: Example #2

fn test_noalias(x: &mut i32, y: &mut i32) -> i32 {
// x, y cannot alias: they are unique pointers
*x = 42;
*y = 37;
return *x; // must return 42

}

6



Aliasing guarantees: Example #3

fn test_shared(x: &i32) -> bool {
let val = *x;
// unknown_function_2 cannot mutate x
unknown_function_2(x);
return *x == val; // must return true

}

7



Rust enforces this via ownership & borrowing:

Aliasing
+

Mutation

1. Full ownership: T
+ mutation, deallocation
- aliasing

2. Mutable reference: &mut T
(borrowed)
+ mutation
- aliasing, deallocation

3. Shared reference: &T
(borrowed)
+ aliasing
- mutation, deallocation

Rust’s reference types provide
strong aliasing information.

The optimizer should exploit that.

But there is a problem:

UNSAFE CODE!

8



Rust enforces this via ownership & borrowing:

Aliasing
+

Mutation

1. Full ownership: T
+ mutation, deallocation
- aliasing

2. Mutable reference: &mut T
(borrowed)
+ mutation
- aliasing, deallocation

3. Shared reference: &T
(borrowed)
+ aliasing
- mutation, deallocation

Rust’s reference types provide
strong aliasing information.

The optimizer should exploit that.

But there is a problem:

UNSAFE CODE!

8



Rust enforces this via ownership & borrowing:

Aliasing
+

Mutation

1. Full ownership: T
+ mutation, deallocation
- aliasing

2. Mutable reference: &mut T
(borrowed)
+ mutation
- aliasing, deallocation

3. Shared reference: &T
(borrowed)
+ aliasing
- mutation, deallocation

Rust’s reference types provide
strong aliasing information.

The optimizer should exploit that.

But there is a problem:

UNSAFE CODE!

8



Unsafe code can access hazardous operations
that are banned in safe code:
unsafe fn hazardous(x: usize) -> i32 {
// *const T is the type of raw (unsafe) pointers
let x_ptr = x as *const i32;
return *x_ptr; // dereferencing an arbitrary integer

}

• Used for better performance, FFI,
implementing many standard library types
• Generally encapsulated by safe APIs

9



1: static mut ALIAS: *mut i32 = std::ptr::null_mut();
2: fn main() {
3: let l = &mut 0;
4: unsafe { ALIAS = l as *mut i32; }
5: println!("The answer is {}", test_unique(&mut *l));
6: // prints: The answer is 7
7: }
8: fn unknown_function_1() {
9: unsafe { *ALIAS = 7; }
10: }

11: fn test_unique(x: &mut i32) -> i32 {
12: *x = 42;
13: unknown_function_1();
14: return *x;
15: }

ALIAS is a raw pointer (*mut T)

ALIAS and x point
to the same

location

Overwrites *x with 7

Mutating *x inside
unknown_function_1 must be UB

to justify the optimization.

10



1: static mut ALIAS: *mut i32 = std::ptr::null_mut();
2: fn main() {
3: let l = &mut 0;
4: unsafe { ALIAS = l as *mut i32; }
5: println!("The answer is {}", test_unique(&mut *l));
6: // prints: The answer is 7
7: }
8: fn unknown_function_1() {
9: unsafe { *ALIAS = 7; }
10: }
11: fn test_unique(x: &mut i32) -> i32 {
12: *x = 42;
13: unknown_function_1();
14: return *x;
15: }

ALIAS is a raw pointer (*mut T)

ALIAS and x point
to the same

location

Overwrites *x with 7

Mutating *x inside
unknown_function_1 must be UB

to justify the optimization.

10



1: static mut ALIAS: *mut i32 = std::ptr::null_mut();
2: fn main() {
3: let l = &mut 0;
4: unsafe { ALIAS = l as *mut i32; }
5: println!("The answer is {}", test_unique(&mut *l));
6: // prints: The answer is 7
7: }
8: fn unknown_function_1() {
9: unsafe { *ALIAS = 7; }
10: }
11: fn test_unique(x: &mut i32) -> i32 {
12: *x = 42;
13: unknown_function_1();
14: return *x;
15: }

ALIAS is a raw pointer (*mut T)

ALIAS and x point
to the same

location

Overwrites *x with 7

Mutating *x inside
unknown_function_1 must be UB

to justify the optimization.

10



1: static mut ALIAS: *mut i32 = std::ptr::null_mut();
2: fn main() {
3: let l = &mut 0;
4: unsafe { ALIAS = l as *mut i32; }
5: println!("The answer is {}", test_unique(&mut *l));
6: // prints: The answer is 7
7: }
8: fn unknown_function_1() {
9: unsafe { *ALIAS = 7; }
10: }
11: fn test_unique(x: &mut i32) -> i32 {
12: *x = 42;
13: unknown_function_1();
14: return *x;
15: }

ALIAS is a raw pointer (*mut T)

ALIAS and x point
to the same

location

Overwrites *x with 7

Mutating *x inside
unknown_function_1 must be UB

to justify the optimization.

10



Stacked Borrows

Work-in-progress aliasing model
defining which pointers may be used to

access memory, ensuring:

• Uniqueness of mutable references
• Immutability of shared references

Implemented in Miri, an experimental
interpreter for Rust’s MIR

https://github.com/rust-lang/miri

Already uncovered 9 bugs
in Rust’s standard library!

11

https://github.com/rust-lang/miri


Stacked Borrows

Work-in-progress aliasing model
defining which pointers may be used to

access memory, ensuring:

• Uniqueness of mutable references
• Immutability of shared references

Implemented in Miri, an experimental
interpreter for Rust’s MIR

https://github.com/rust-lang/miri

Already uncovered 9 bugs
in Rust’s standard library!

11

https://github.com/rust-lang/miri


Stacked Borrows

Work-in-progress aliasing model
defining which pointers may be used to

access memory, ensuring:

• Uniqueness of mutable references
• Immutability of shared references

Implemented in Miri, an experimental
interpreter for Rust’s MIR

https://github.com/rust-lang/miri

Already uncovered 9 bugs
in Rust’s standard library!

11

https://github.com/rust-lang/miri


Stacked Borrows

Work-in-progress aliasing model
defining which pointers may be used to

access memory, ensuring:

• Uniqueness of mutable references
• Immutability of shared references

Implemented in Miri, an experimental
interpreter for Rust’s MIR

https://github.com/rust-lang/miri

Already uncovered 9 bugs
in Rust’s standard library!

11

https://github.com/rust-lang/miri


1: let mut l = 0;
2: let a = &mut l;

3: let b = &mut *a;
4: *b = 3;
5: *a = 4;
6: *b = 4; // ERROR: lifetime of ‘b‘ has ended

• Chain of borrows:
l borrowed to a reborrowed to b
• Well-bracketed: no ABAB

(Re)borrows are organized
in a stack.

12



1: let mut l = 0;
2: let a = &mut l;
3: let b = &mut *a;

4: *b = 3;
5: *a = 4;
6: *b = 4; // ERROR: lifetime of ‘b‘ has ended

• Chain of borrows:
l borrowed to a reborrowed to b
• Well-bracketed: no ABAB

(Re)borrows are organized
in a stack.

12



1: let mut l = 0;
2: let a = &mut l;
3: let b = &mut *a;
4: *b = 3;

5: *a = 4;
6: *b = 4; // ERROR: lifetime of ‘b‘ has ended

• Chain of borrows:
l borrowed to a reborrowed to b
• Well-bracketed: no ABAB

(Re)borrows are organized
in a stack.

12



1: let mut l = 0;
2: let a = &mut l;
3: let b = &mut *a;
4: *b = 3;
5: *a = 4;

6: *b = 4; // ERROR: lifetime of ‘b‘ has ended

• Chain of borrows:
l borrowed to a reborrowed to b
• Well-bracketed: no ABAB

(Re)borrows are organized
in a stack.

12



1: let mut l = 0;
2: let a = &mut l;
3: let b = &mut *a;
4: *b = 3;
5: *a = 4;
6: *b = 4; // ERROR: lifetime of ‘b‘ has ended

• Chain of borrows:
l borrowed to a reborrowed to b
• Well-bracketed: no ABAB

(Re)borrows are organized
in a stack.

12



1: let mut l = 0;
2: let a = &mut l;
3: let b = &mut *a;
4: *b = 3;
5: *a = 4;
6: *b = 4; // ERROR: lifetime of ‘b‘ has ended

• Chain of borrows:
l borrowed to a reborrowed to b
• Well-bracketed: no ABAB

(Re)borrows are organized
in a stack.

12



1: let mut l = 0;
2: let a = &mut l;
3: let b = &mut *a;
4: *b = 3;
5: *a = 4;
6: *b = 4; // ERROR: lifetime of ‘b‘ has ended

• Chain of borrows:
l borrowed to a reborrowed to b
• Well-bracketed: no ABAB

(Re)borrows are organized
in a stack.

12



1: let mut l = 0;
2: let a = &mut l;
3: let b = &mut *a;
4: *b = 3;
5: *a = 4;
6: *b = 4; // ERROR: lifetime of ‘b‘ has ended

• Chain of borrows:
l borrowed to a reborrowed to b
• Well-bracketed: no ABAB

(Re)borrows are organized
in a stack.

12



Stacked Borrows ingredients

Pointer values carry a tag: (PtrVal := Loc× N⊥)
0x40[1], 0x41[⊥]

references (&mut T) are
identified by a tag

raw pointers (*mut T) fall
back to untagged

Every location in memory comes with an
associated stack: (Mem := Loc fin−⇀ Byte× Stack)
...
0x40: 0xFE, [0: Unique, 1: Unique]
0x41: 0xFE, [0: Unique, ⊥: SharedRW]
...

Reference tagged 1 borrows from reference
tagged 0

Untagged pointer(s) borrow(s) from reference
tagged 0

13



Stacked Borrows ingredients

Pointer values carry a tag: (PtrVal := Loc× N⊥)
0x40[1], 0x41[⊥]

references (&mut T) are
identified by a tag

raw pointers (*mut T) fall
back to untagged

Every location in memory comes with an
associated stack: (Mem := Loc fin−⇀ Byte× Stack)
...
0x40: 0xFE, [0: Unique, 1: Unique]
0x41: 0xFE, [0: Unique, ⊥: SharedRW]
...

Reference tagged 1 borrows from reference
tagged 0

Untagged pointer(s) borrow(s) from reference
tagged 0

13



Stacked Borrows ingredients

Pointer values carry a tag: (PtrVal := Loc× N⊥)
0x40[1], 0x41[⊥]

references (&mut T) are
identified by a tag

raw pointers (*mut T) fall
back to untagged

Every location in memory comes with an
associated stack: (Mem := Loc fin−⇀ Byte× Stack)
...
0x40: 0xFE, [0: Unique, 1: Unique]
0x41: 0xFE, [0: Unique, ⊥: SharedRW]
...

Reference tagged 1 borrows from reference
tagged 0

Untagged pointer(s) borrow(s) from reference
tagged 0

13



Stacked Borrows ingredients

Pointer values carry a tag: (PtrVal := Loc× N⊥)
0x40[1], 0x41[⊥]

references (&mut T) are
identified by a tag

raw pointers (*mut T) fall
back to untagged

Every location in memory comes with an
associated stack: (Mem := Loc fin−⇀ Byte× Stack)
...
0x40: 0xFE, [0: Unique, 1: Unique]
0x41: 0xFE, [0: Unique, ⊥: SharedRW]
...

Reference tagged 1 borrows from reference
tagged 0

Untagged pointer(s) borrow(s) from reference
tagged 0

13



1: static mut ALIAS: *mut i32 = std::ptr::null_mut();
2: fn main() {
3: let l = &mut 0;
4: unsafe { ALIAS = l as *mut i32; }
5: println!("The answer is {}", test_unique(&mut *l));
6: // prints: The answer is 7
7: }
8: fn unknown_function_1() {
9: unsafe { *ALIAS = 7; }
10: }
11: fn test_unique(x: &mut i32) -> i32 {
12: *x = 42;
13: unknown_function_1();
14: return *x;
15: }

ALIAS is a raw pointer (*mut T)

ALIAS and x point
to the same

location

Overwrites *x with 7

Mutating *x inside
unknown_function_1 must be UB

to justify the optimization.

14



1: let l = &mut 0;
2: let ALIAS = l as *mut i32;
3: let x = &mut *l;
4: *x = 42;
5: unsafe { *ALIAS = 7; }
6: println!("The answer is {}", *x);

Stack:It is undefined behavior to use a
pointer whose tag is not on the stack.

15



1: let l = &mut 0; // Tag: 0

2: let ALIAS = l as *mut i32;
3: let x = &mut *l;
4: *x = 42;
5: unsafe { *ALIAS = 7; }
6: println!("The answer is {}", *x);

Stack:It is undefined behavior to use a
pointer whose tag is not on the stack.

15



1: let l = &mut 0; // Tag: 0

2: let ALIAS = l as *mut i32;
3: let x = &mut *l;
4: *x = 42;
5: unsafe { *ALIAS = 7; }
6: println!("The answer is {}", *x);

Stack:
[0: Unique]

It is undefined behavior to use a
pointer whose tag is not on the stack.

15



1: let l = &mut 0; // Tag: 0
2: let ALIAS = l as *mut i32; // Tag: ⊥

3: let x = &mut *l;
4: *x = 42;
5: unsafe { *ALIAS = 7; }
6: println!("The answer is {}", *x);

Stack:
[0: Unique, ⊥: SharedRW]

Find permission for old tag 0 on stack;
add new permission ⊥: SharedRW above it

It is undefined behavior to use a
pointer whose tag is not on the stack.

15



1: let l = &mut 0; // Tag: 0
2: let ALIAS = l as *mut i32; // Tag: ⊥
3: let x = &mut *l; // Tag: 1

4: *x = 42;
5: unsafe { *ALIAS = 7; }
6: println!("The answer is {}", *x);

Stack:
[0: Unique, 1: Unique]

Find permission for old tag 0 on stack;
remove incompatible ⊥: SharedRW above;
push new permission 1: Unique

It is undefined behavior to use a
pointer whose tag is not on the stack.

15



1: let l = &mut 0; // Tag: 0
2: let ALIAS = l as *mut i32; // Tag: ⊥
3: let x = &mut *l; // Tag: 1
4: *x = 42;

5: unsafe { *ALIAS = 7; }
6: println!("The answer is {}", *x);

Stack:
[0: Unique, 1: Unique]

Find permission for tag 1 on stack;
remove incompatible items above (none)

It is undefined behavior to use a
pointer whose tag is not on the stack.

15



1: let l = &mut 0; // Tag: 0
2: let ALIAS = l as *mut i32; // Tag: ⊥
3: let x = &mut *l; // Tag: 1
4: *x = 42;
5: unsafe { *ALIAS = 7; }

6: println!("The answer is {}", *x);

Stack:
[0: Unique, 1: Unique]

Find permission for tag ⊥ on stack – there is no
such item!

It is undefined behavior to use a
pointer whose tag is not on the stack.

15



1: let l = &mut 0; // Tag: 0
2: let ALIAS = l as *mut i32; // Tag: ⊥
3: let x = &mut *l; // Tag: 1
4: *x = 42;
5: unsafe { *ALIAS = 7; }

6: println!("The answer is {}", *x);

Stack:
[0: Unique, 1: Unique]

Find permission for tag ⊥ on stack – there is no
such item!

It is undefined behavior to use a
pointer whose tag is not on the stack.

15



Stacked Borrows rules (so far)

• Memory access: find permission for our tag,
remove incompatible items above
• Assigning fresh tags:
• Taking a reference (&mut term): fresh tag n.

find old tag; remove incompatible above; push new
• Reference to raw pointer (term as *mut T): tag ⊥.

find old tag; add new just above

• Compatibility:
• Reads are compatible with SharedRW, SharedRO
• Writes to SharedRW are compatible with SharedRW

• Retag when reference “enters” function
(argument, load, call returns)

16



Correctness of optimization (sketch)

fn test_unique(x: &mut i32) -> i32 {
*x = 42;
// unknown_function_1 cannot have an alias to x
unknown_function_1();
return *x; // must return 42

}

x’s tag with Unique permission is at the
top of the stack

If unknown_function_1 accesses this
memory, it will pop x’s permission o�

the stack
UB unless x’s
permission is

still in the stack

We assumed that unknown_function_1
cannot have a reference with x’s tag!

17



Correctness of optimization (sketch)

fn test_unique(x: &mut i32) -> i32 {
*x = 42;
// unknown_function_1 cannot have an alias to x
unknown_function_1();
return *x; // must return 42

}

x’s tag with Unique permission is at the
top of the stack

If unknown_function_1 accesses this
memory, it will pop x’s permission o�

the stack
UB unless x’s
permission is

still in the stack

We assumed that unknown_function_1
cannot have a reference with x’s tag!

17



Correctness of optimization (sketch)

fn test_unique(x: &mut i32) -> i32 {
*x = 42;
// unknown_function_1 cannot have an alias to x
unknown_function_1();
return *x; // must return 42

}

x’s tag with Unique permission is at the
top of the stack

If unknown_function_1 accesses this
memory, it will pop x’s permission o�

the stack

UB unless x’s
permission is

still in the stack

We assumed that unknown_function_1
cannot have a reference with x’s tag!

17



Correctness of optimization (sketch)

fn test_unique(x: &mut i32) -> i32 {
*x = 42;
// unknown_function_1 cannot have an alias to x
unknown_function_1();
return *x; // must return 42

}

x’s tag with Unique permission is at the
top of the stack

If unknown_function_1 accesses this
memory, it will pop x’s permission o�

the stack
UB unless x’s
permission is

still in the stack

We assumed that unknown_function_1
cannot have a reference with x’s tag!

17



Correctness of optimization (sketch)

fn test_unique(x: &mut i32) -> i32 {
*x = 42;
// unknown_function_1 cannot have an alias to x
unknown_function_1();
return *x; // must return 42

}

x’s tag with Unique permission is at the
top of the stack

If unknown_function_1 accesses this
memory, it will pop x’s permission o�

the stack
UB unless x’s
permission is

still in the stack

We assumed that unknown_function_1
cannot have a reference with x’s tag!

17



Retagging for unique tags

fn test_unique(x: &mut i32) -> i32 {
retag(x); // think: x = &mut *x;
*x = 42;
// unknown_function_1 cannot have an alias to x
unknown_function_1();
return *x; // must return 42

}

x gets a fresh tag with Unique permission pushed
to top of the stack

unknown_function_1 cannot guess or
forge our tag: if it accesses this

memory, it will pop x’s tag o� the stack
UB unless x’s
permission is

still in the stack

18



Retagging for unique tags

fn test_unique(x: &mut i32) -> i32 {
retag(x); // think: x = &mut *x;
*x = 42;
// unknown_function_1 cannot have an alias to x
unknown_function_1();
return *x; // must return 42

}

x gets a fresh tag with Unique permission pushed
to top of the stack

unknown_function_1 cannot guess or
forge our tag: if it accesses this

memory, it will pop x’s tag o� the stack
UB unless x’s
permission is

still in the stack

18



Retagging for unique tags

fn test_unique(x: &mut i32) -> i32 {
retag(x); // think: x = &mut *x;
*x = 42;
// unknown_function_1 cannot have an alias to x
unknown_function_1();
return *x; // must return 42

}

x gets a fresh tag with Unique permission pushed
to top of the stack

unknown_function_1 cannot guess or
forge our tag: if it accesses this

memory, it will pop x’s tag o� the stack

UB unless x’s
permission is

still in the stack

18



Retagging for unique tags

fn test_unique(x: &mut i32) -> i32 {
retag(x); // think: x = &mut *x;
*x = 42;
// unknown_function_1 cannot have an alias to x
unknown_function_1();
return *x; // must return 42

}

x gets a fresh tag with Unique permission pushed
to top of the stack

unknown_function_1 cannot guess or
forge our tag: if it accesses this

memory, it will pop x’s tag o� the stack
UB unless x’s
permission is

still in the stack
18



Stacked Borrows rules (so far)

• Memory access: find permission for our tag,
remove incompatible items above
• Assigning fresh tags:
• Taking a reference (&mut term): fresh tag n.

find old tag; remove incompatible above; push new
• Reference to raw pointer (term as *mut T): tag ⊥.

find old tag; add new just above

• Compatibility:
• Reads are compatible with SharedRW, SharedRO
• Writes to SharedRW are compatible with SharedRW

• Retag when reference “enters” function
(argument, load, call returns)

19



Stacked Borrows rules (so far)

• Memory access: find permission for our tag,
remove incompatible items above
• Assigning fresh tags:
• Taking a reference (&mut term): fresh tag n.

find old tag; remove incompatible above; push new
• Reference to raw pointer (term as *mut T): tag ⊥.

find old tag; add new just above

• Compatibility:
• Reads are compatible with SharedRW, SharedRO
• Writes to SharedRW are compatible with SharedRW

• Retag when reference “enters” function
(argument, load, call returns)

19



Stacked Borrows

Work-in-progress aliasing model
defining which pointers may be used to

access memory, ensuring:

• Uniqueness of mutable references
• Immutability of shared references

Implemented in Miri, an experimental
interpreter for Rust’s MIR

https://github.com/rust-lang/miri

Already uncovered 9 bugs
in Rust’s standard library!

20

https://github.com/rust-lang/miri


1: fn main() {
2: let l = &mut 0;
3: println!("Test result: {}", test_shared(&*l));
4: // prints: Test result: false
5: }
6: fn unknown_function_2(x: &i32) {
7: let ptr = x as *const i32 as *mut i32;
8: unsafe { *ptr = 7; }
9: }

10:
11: fn test_shared(x: &i32) -> bool {
12: let val = *x;
13: unknown_function_2(x);
14: return *x == val;
15: }

Writes into x a�er some
pointer casts

Overwrites *x with 7

Mutating *x inside
unknown_function_2 must be UB

to justify the optimization.

21



1: fn main() {
2: let l = &mut 0;
3: println!("Test result: {}", test_shared(&*l));
4: // prints: Test result: false
5: }
6: fn unknown_function_2(x: &i32) {
7: let ptr = x as *const i32 as *mut i32;
8: unsafe { *ptr = 7; }
9: }
10:
11: fn test_shared(x: &i32) -> bool {
12: let val = *x;
13: unknown_function_2(x);
14: return *x == val;
15: }

Writes into x a�er some
pointer casts

Overwrites *x with 7

Mutating *x inside
unknown_function_2 must be UB

to justify the optimization.

21



1: fn main() {
2: let l = &mut 0;
3: println!("Test result: {}", test_shared(&*l));
4: // prints: Test result: false
5: }
6: fn unknown_function_2(x: &i32) {
7: let ptr = x as *const i32 as *mut i32;
8: unsafe { *ptr = 7; }
9: }
10:
11: fn test_shared(x: &i32) -> bool {
12: let val = *x;
13: unknown_function_2(x);
14: return *x == val;
15: }

Writes into x a�er some
pointer casts

Overwrites *x with 7

Mutating *x inside
unknown_function_2 must be UB

to justify the optimization.

21



1: fn main() {
2: let l = &mut 0;
3: println!("Test result: {}", test_shared(&*l));
4: // prints: Test result: false
5: }
6: fn unknown_function_2(x: &i32) {
7: let ptr = x as *const i32 as *mut i32;
8: unsafe { *ptr = 7; }
9: }
10:
11: fn test_shared(x: &i32) -> bool {
12: let val = *x;
13: unknown_function_2(x);
14: return *x == val;
15: }

Writes into x a�er some
pointer casts

Overwrites *x with 7

Mutating *x inside
unknown_function_2 must be UB

to justify the optimization.

21



1: fn main() {
2: let l = &mut 0;
3: println!("Test result: {}", test_shared(&*l));
4: // prints: Test result: false
5: }
6: fn unknown_function_2(x: &i32) {
7: let ptr = x as *const i32 as *mut i32;
8: unsafe { *ptr = 7; }
9: }
10:
11: fn test_shared(x: &i32) -> bool {
12: let val = *x;
13: unknown_function_2(x);
14: return *x == val;
15: }

Writes into x a�er some
pointer casts

Overwrites *x with 7

Mutating *x inside
unknown_function_2 must be UB

to justify the optimization.

21



1: let mut l = 0;
2: let a = &mut l;

3: let b = &*a;
4: let _val = *b;
5: let _val = *a;
6: let _val = *b;
7: *a = 1;
8: let _val = *b; // ERROR: lifetime of ‘b‘ has ended

• Reads allowed through a and b. . .
• . . . until first write through a
• No mutation between creation and use of a

shared reference

Shared references allow reads
but no writes with other pointers.

22



1: let mut l = 0;
2: let a = &mut l;
3: let b = &*a;

4: let _val = *b;
5: let _val = *a;
6: let _val = *b;
7: *a = 1;
8: let _val = *b; // ERROR: lifetime of ‘b‘ has ended

• Reads allowed through a and b. . .
• . . . until first write through a
• No mutation between creation and use of a

shared reference

Shared references allow reads
but no writes with other pointers.

22



1: let mut l = 0;
2: let a = &mut l;
3: let b = &*a;
4: let _val = *b;

5: let _val = *a;
6: let _val = *b;
7: *a = 1;
8: let _val = *b; // ERROR: lifetime of ‘b‘ has ended

• Reads allowed through a and b. . .
• . . . until first write through a
• No mutation between creation and use of a

shared reference

Shared references allow reads
but no writes with other pointers.

22



1: let mut l = 0;
2: let a = &mut l;
3: let b = &*a;
4: let _val = *b;
5: let _val = *a;
6: let _val = *b;

7: *a = 1;
8: let _val = *b; // ERROR: lifetime of ‘b‘ has ended

• Reads allowed through a and b. . .
• . . . until first write through a
• No mutation between creation and use of a

shared reference

Shared references allow reads
but no writes with other pointers.

22



1: let mut l = 0;
2: let a = &mut l;
3: let b = &*a;
4: let _val = *b;
5: let _val = *a;
6: let _val = *b;
7: *a = 1;
8: let _val = *b; // ERROR: lifetime of ‘b‘ has ended

• Reads allowed through a and b. . .
• . . . until first write through a
• No mutation between creation and use of a

shared reference

Shared references allow reads
but no writes with other pointers.

22



1: let mut l = 0;
2: let a = &mut l;
3: let b = &*a;
4: let _val = *b;
5: let _val = *a;
6: let _val = *b;
7: *a = 1;
8: let _val = *b; // ERROR: lifetime of ‘b‘ has ended

• Reads allowed through a and b. . .
• . . . until first write through a
• No mutation between creation and use of a

shared reference

Shared references allow reads
but no writes with other pointers.

22



1: let mut l = 0;
2: let a = &mut l;
3: let b = &*a;
4: let _val = *b;
5: let _val = *a;
6: let _val = *b;
7: *a = 1;
8: let _val = *b; // ERROR: lifetime of ‘b‘ has ended

• Reads allowed through a and b. . .
• . . . until first write through a
• No mutation between creation and use of a

shared reference

Shared references allow reads
but no writes with other pointers.

22



1: let mut l = 0;
2: let a = &mut l;
3: let b = &*a;
4: let _val = *b;
5: let _val = *a;
6: let _val = *b;
7: *a = 1;
8: let _val = *b; // ERROR: lifetime of ‘b‘ has ended

• Reads allowed through a and b. . .
• . . . until first write through a
• No mutation between creation and use of a

shared reference

Shared references allow reads
but no writes with other pointers.

22



Stacked Borrows ingredients

Pointers carry a tag: (PtrVal := Loc× N⊥)
0x40[1], 0x41[⊥]

references (&mut T/&T)
are identified by a tag

raw pointers (*mut T/*const T)
fall back to untagged

Every location in memory comes with an
associated stack: (Mem := Loc fin−⇀ Byte× Stack)
...
0x40: 0xFE, [0: Unique, 1: Unique]
0x41: 0xFE, [0: Unique, ⊥: SharedRW]
0x42: 0x00, [0: Unique, 1: SharedRO]
...

Can be read but not written by 1.

23



Stacked Borrows ingredients

Pointers carry a tag: (PtrVal := Loc× N⊥)
0x40[1], 0x41[⊥]

references (&mut T/&T)
are identified by a tag

raw pointers (*mut T/*const T)
fall back to untagged

Every location in memory comes with an
associated stack: (Mem := Loc fin−⇀ Byte× Stack)
...
0x40: 0xFE, [0: Unique, 1: Unique]
0x41: 0xFE, [0: Unique, ⊥: SharedRW]
0x42: 0x00, [0: Unique, 1: SharedRO]
...

Can be read but not written by 1.

23



Stacked Borrows ingredients

Pointers carry a tag: (PtrVal := Loc× N⊥)
0x40[1], 0x41[⊥]

references (&mut T/&T)
are identified by a tag

raw pointers (*mut T/*const T)
fall back to untagged

Every location in memory comes with an
associated stack: (Mem := Loc fin−⇀ Byte× Stack)
...
0x40: 0xFE, [0: Unique, 1: Unique]
0x41: 0xFE, [0: Unique, ⊥: SharedRW]
0x42: 0x00, [0: Unique, 1: SharedRO]
...

Can be read but not written by 1.
23



1: fn main() {
2: let l = &mut 0;
3: println!("Test result: {}", test_shared(&*l));
4: // prints: Test result: false
5: }
6: fn unknown_function_2(x: &i32) {
7: let ptr = x as *const i32 as *mut i32;
8: unsafe { *ptr = 7; }
9: }
10:
11: fn test_shared(x: &i32) -> bool {
12: let val = *x;
13: unknown_function_2(x);
14: return *x == val;
15: }

Writes into x a�er some
pointer casts

Overwrites *x with 7

Mutating *x inside
unknown_function_2 must be UB

to justify the optimization.

24



1: let l = &mut 0;
2: let x = &*l;
3: let val = *x;
4: let ptr = x as *const i32 as *mut i32;
5: unsafe { *ptr = 7; }
6: let test = *x;
7: println!("Test result: {}", test == val);

Stack:

25



1: let l = &mut 0; // Tag: 0

2: let x = &*l;
3: let val = *x;
4: let ptr = x as *const i32 as *mut i32; // Tag: ⊥
5: unsafe { *ptr = 7; }
6: let test = *x;
7: println!("Test result: {}", test == val);

Stack:
[0: Unique]

25



1: let l = &mut 0; // Tag: 0
2: let x = &*l; // Tag: 1

3: let val = *x;
4: let ptr = x as *const i32 as *mut i32; // Tag: ⊥
5: unsafe { *ptr = 7; }
6: let test = *x;
7: println!("Test result: {}", test == val);

Stack:
[0: Unique; 1: SharedRO]

Find read permission for 0 on stack;
remove read-incompatible items above (none);
push new permission 1: SharedRO

25



1: let l = &mut 0; // Tag: 0
2: let x = &*l; // Tag: 1
3: let val = *x;

4: let ptr = x as *const i32 as *mut i32; // Tag: ⊥
5: unsafe { *ptr = 7; }
6: let test = *x;
7: println!("Test result: {}", test == val);

Stack:
[0: Unique; 1: SharedRO]

Find read permission for 1 on stack;
remove read-incompatible items above (none)

25



1: let l = &mut 0; // Tag: 0
2: let x = &*l; // Tag: 1
3: let val = *x;
4: let ptr = x as *const i32 as *mut i32; // Tag: ⊥

5: unsafe { *ptr = 7; }
6: let test = *x;
7: println!("Test result: {}", test == val);

Stack:
[0: Unique; 1: SharedRO; ⊥: SharedRO]

Find read permission for 1 on stack;
remove read-incompatible items above (none);
push new permission ⊥: SharedRO

25



1: let l = &mut 0; // Tag: 0
2: let x = &*l; // Tag: 1
3: let val = *x;
4: let ptr = x as *const i32 as *mut i32; // Tag: ⊥
5: unsafe { *ptr = 7; }

6: let test = *x;
7: println!("Test result: {}", test == val);

Stack:
[0: Unique; 1: SharedRO; ⊥: SharedRO]

ptr cannot be used for writing:
⊥only has read-only permission!

25



Stacked Borrows rules

• Memory access: find permission for our tag,
remove incompatible items above
• Assigning fresh tags:
• Taking a reference (&mut term): fresh tag n.

find old tag; remove incompatible above; push new
• Reference to raw pointer (term as *mut T): tag ⊥.

find old tag; add new just above
• Compatibility:
• Reads are compatible with SharedRW, SharedRO
• Writes to SharedRW are compatible with SharedRW

• Retag when reference “enters” function
(argument, load, call returns)

26



Correctness of optimization (sketch)

fn test_shared(x: &i32) -> bool {
retag(x); // think: x = &*x;
let val = *x;
// unknown_function_2 cannot mutate x
unknown_function_2(x);
return *x == val; // must return true

}

x has fresh tag with permission
SharedRO at the top of the stack

If unknown_function_2 writes to
this memory, x’s tag will be

removed from the stack
UB unless x’s
permission is

still in the stack

27



Correctness of optimization (sketch)

fn test_shared(x: &i32) -> bool {
retag(x); // think: x = &*x;
let val = *x;
// unknown_function_2 cannot mutate x
unknown_function_2(x);
return *x == val; // must return true

}

x has fresh tag with permission
SharedRO at the top of the stack

If unknown_function_2 writes to
this memory, x’s tag will be

removed from the stack
UB unless x’s
permission is

still in the stack

27



Correctness of optimization (sketch)

fn test_shared(x: &i32) -> bool {
retag(x); // think: x = &*x;
let val = *x;
// unknown_function_2 cannot mutate x
unknown_function_2(x);
return *x == val; // must return true

}

x has fresh tag with permission
SharedRO at the top of the stack

If unknown_function_2 writes to
this memory, x’s tag will be

removed from the stack

UB unless x’s
permission is

still in the stack

27



Correctness of optimization (sketch)

fn test_shared(x: &i32) -> bool {
retag(x); // think: x = &*x;
let val = *x;
// unknown_function_2 cannot mutate x
unknown_function_2(x);
return *x == val; // must return true

}

x has fresh tag with permission
SharedRO at the top of the stack

If unknown_function_2 writes to
this memory, x’s tag will be

removed from the stack
UB unless x’s
permission is

still in the stack
27



What else?

What I didn’t talk about:
• Interior mutability (shared references through

which mutation is allowed)
• Barriers, two-phase borrows
• Formal model in Coq (proofs of optimizations

in progress)

Future work:
• Integrating stacked borrows into RustBelt
• Handling integer-pointer casts
• Proving correctness of compilation to LLVM 28



For more details,
check out Ralf’s blog at:

https://www.ralfj.de/blog/

29

https://www.ralfj.de/blog/

