
Compositional Compiler
Correctness in Coq

Steve Zdancewic
University of Pennsylvania

Collaborators
Paul He
Gil Hur

Gregory Malecha
Benjamin Pierce

Li-yao Xia
Yannick Zackowski

Goal: model (in Coq) interactive systems
 - web servers
 - operating systems
 - language semantics

and prove properties about them.

Question: how to do that when Coq is a pure, total language?

Interaction Trees

4

https://github.com/DeepSpec/InteractionTrees

tutorial/*.v

(This talk is based on the AsmOptimization git branch,
which will be merged with master early next week J)

5

See also:
 Capretta's "Delay" Monad,
 Kiselyov & Ishii "Freer" monad,
 Hancock & Setzer – line of work, including Agda implementation
 McBride
 Plotkin & Power and much other work: Algebraic Effects

6

τ τ τ

τ τ τ τ τ τ

τ τ τ τ e2

k2 0

k2 1

k2 3 e1

k1 a

k1 b

k1 c

k1 d

k1 e

τ τ τ …

τ e3 k3 () τ e3 k3 () τ e3 k3 () …

τ τ 42 τ τ 17

τ 11

τ τ τ 0 τ d

Good Qualities of Interaction Trees

•  (ITree E) is a monad
–  bind is defined coinductively (it grafts on subtrees)

•  Extractable from Coq
–  yields a way of (externally) running computations described by

interaction trees
–  interpretation of events can be

defined in the metalanguage (e.g. Ocaml)
•  Behavioral Equivalences

–  strong bisimulation
–  weak bisimulation (insert a finite no. of Tau's anywhere)
–  rich equational theory

7

Quite intricate coinductive
proofs needed here…
… but, they're encapsulated
in the library.

ITree Interface
Operations

Equivalence

Equations

Loop Equivalences*

* Traced Monoidal Categories, a.k.a. Arrows with loops

State Interpreter Equivalences

ITrees Library Features
•  ITree monad
•  parameterized equivalences
≅ = eq_itree eq eq_itree R
≈ = eutt eq eutt R

•  KTrees "continuation trees"
–  Coq functions of type: A ➞ itree E B
–  Supports looping but not recursion

•  Interpreters
–  state, environment, choice, loops, etc.

•  Typeclasses
–  for "subevent" declarations e.g. StateE -< E

Verifying a (simple) Compiler
Strategy:
•  use denotational semantics for source and target languages
•  build bisimulation compositionally (by induction on syntax)
•  all key proof steps: rewriting via equational reasoning

Benefits:
•  not an operational semantics (e.g. no program counter, etc.)
•  no (explicit) codinduction
•  proof factors into two parts

–  control-flow, reasoning about CFG composition
(compiler independent)

–  language-specific correctness of individual instructions
•  modular & robust of proofs (?)

COQ CODE

Itrees Library Problems & Challenges
•  Dealing with many effects: E1 +' E2 +' … +' En

–  nested interpreters: stateT S1 (stateT S2 M) X
–  typeclass machinery is brittle: (E -< F)
–  writing generic lemmas, not so easy
⇒ ρ-polymorphism, more explicit inclusion witnesses, … ??

•  Working modulo equivalences
–  (a.k.a. "setoid hell")
–  typeclasses, instances of Proper
–  ??

•  More general equational theory for ALoop
–  mrec

•  Coinductive definitions in Coq don't simplify
–  have to use tactics or "fuel" to

Verified Compiler Challenges
•  Current Asm representation doesn't easily

facilitate certain optimizations
–  need a bit more structure on labels

•  Scaling up to more language features
– Vellvm branch uses such denotational semantic
–  this representation is significantly simpler
–  still extractable as interpreter
– … not many proofs yet

•  Higher-order functions?

16

https://github.com/DeepSpec/InteractionTrees

tutorial/*.v

This talk is based on the AsmOptimization git branch.

Conclusions
ITrees provide a useful way to represent effectful/non-terminating
computations in Coq.
•  Easy to program with
•  Supports extraction
•  Rich equational theory

Recursion & Loops
ITrees support general mutual recursion
– no guardedness / termination requirements!

– using aloop, one can define recursion, loop
combinators

– whole family of structures that support loops

Imp Denotational Semantics

