Compositional Compiler Correctness in Coq

Steve Zdancewic University of Pennsylvania

Collaborators

Paul He Gil Hur Gregory Malecha Benjamin Pierce Li-yao Xia Yannick Zackowski

Goal: model (in Coq) *interactive* systems

- web servers
- operating systems
- language semantics

and prove properties about them.

Question: how to do that when Coq is a pure, total language?

Interaction Trees

https://github.com/DeepSpec/InteractionTrees

tutorial/*.v

(This talk is based on the AsmOptimization git branch, which will be merged with master early next week \odot)

```
CoInductive itree (E : Type \rightarrow Type) (R : Type) :=
  Ret (r:R)Tau (t : itree E R)Vis \{A : Type\} (e:E A) (k : A \rightarrow itree E R).
```
See also: Capretta's "Delay" Monad, Kiselyov & Ishii "Freer" monad, Hancock & Setzer – line of work, including Agda implementation McBride Plotkin & Power and much other work: Algebraic Effects

Good Qualities of Interaction Trees

- (ITree E) is a monad
	- **bind** is defined coinductively (it grafts on subtrees)
- Extractable from Coq
	- yields a way of (externally) running computations described by interaction trees
	- interpretation of events can be defined in the metalanguage (e.g. Ocaml)
- Behavioral Equivalences
	- strong bisimulation
- Quite intricate coinductive proofs needed here… … but, they're encapsulated in the library.
- weak bisimulation (insert a finite no. of Tau's anywhere)
- rich equational theory

ITree Interface

```
Context \{E \mid M : Type \rightarrow Type\} `{Functor M} `{Monad M} `{ALoop M}.
 Operations
trigger : \forall T, E T \rightarrow itree E T.
interp : (\forall T : Type, E T → M T) → (\forall T : Type, itree E T → M T).
           : \forall I A B, (I + A \rightarrow M (I + B)) \rightarrow A \rightarrow M B.
loop
Equivalence
t_1 \cong t_2 - strong bisimulation
t_1 \approx t_2 - weak bisimulation
Equations
Tau t \approx tinterp h (ret r) \cong ret r
interp h (x \leftarrow t;; k x) \cong x \leftarrow (interp h t);; interp h (k x)
interp h (Vis e k) \approx (x \leftarrow (h e);; interp h (k x))
```
Loop Equivalences*

```
(loop body a) \gg=f\cong loop (\lambda ca \Rightarrowcb \leftarrow body ca;
             match cb with
                inl c \Rightarrow Ret (inl c)
              | inr b \rightarrow ITree.map inr (f b)
             end) a.
```


* Traced Monoidal Categories, a.k.a. Arrows with loops

State Interpreter Equivalences

```
interp_state (ret x) s \approx ret (s, x)
interp_state (x \leftarrow t;; k x) s \approx '(news, x) \leftarrow interp_state t s;; interp_state (k x) news
interp_state (Vis getE k) s \approx interp_state (k s) s
interp_state (Vis (putE s') k) s \approx interp_state (k tt) s'
```
interp_state $(x \leftarrow get ; y \leftarrow get ; k y x) s \approx$ interp_state $(x \leftarrow get ; k x x) s$ interp_state (put s1 ;; put s2 ;; k) $s \approx$ interp_state (put s2 ;; k) s

ITrees Library Features

- ITree monad
- parameterized equivalences
	- $\epsilon = eq$ itree eq eq eq itree R
	- \approx = eutt eq eutt R

- KTrees "continuation trees"
	- Coq functions of type: A → itree E B
	- Supports looping but not recursion
- Interpreters
	- state, environment, choice, loops, etc.
- Typeclasses
	- for "subevent" declarations e.g. StateE -< E

Verifying a (simple) Compiler

Strategy:

- use denotational semantics for source and target languages
- build bisimulation compositionally (by induction on syntax)
- all key proof steps: rewriting via equational reasoning

Benefits:

- not an operational semantics (e.g. no program counter, etc.)
- no (explicit) codinduction
- proof factors into two parts
	- control-flow, reasoning about CFG composition (compiler independent)
	- language-specific correctness of individual instructions
- modular & robust of proofs (?)

COQ CODE

Itrees Library Problems & Challenges

- Dealing with many effects: $E1 +' E2 +' ... +' En$
	- nested interpreters: stateT S1 (stateT S2 M) X
	- typeclass machinery is brittle: $(E < F)$
	- writing generic lemmas, not so easy
	- \Rightarrow ρ-polymorphism, more explicit inclusion witnesses, ...??
- Working modulo equivalences
	- (a.k.a. "setoid hell")
	- typeclasses, instances of Proper
	- ??
- More general equational theory for ALoop
	- mrec
- Coinductive definitions in Coq don't simplify
	- have to use tactics or "fuel" to

Verified Compiler Challenges

• Current Asm representation doesn't easily facilitate certain optimizations

– need a bit more structure on labels

- Scaling up to more language features
	- Vellvm branch uses such denotational semantic
	- this representation is significantly simpler
	- still extractable as interpreter
	- … not many proofs yet
- Higher-order functions?

Conclusions

ITrees provide a useful way to represent effectful/non-terminating computations in Coq.

- Easy to program with
- Supports extraction
- Rich equational theory

https://github.com/DeepSpec/InteractionTrees

tutorial/*.v

This talk is based on the AsmOptimization git branch.

Recursion & Loops

ITrees support general mutual recursion – no guardedness / termination requirements!

- Polymorphic Class ALoop (M : Type \rightarrow Type) : Type := aloop : \forall {R I: Type}, (I \rightarrow M I + R) \rightarrow I \rightarrow M R.
	- using aloop, one can define recursion, loop combinators
	- whole family of structures that support loops

```
Definition _aloop {E : Type \rightarrow Type} {R I : Type}
              (tau : )(aloop : I \rightarrow itree E R)\left( step_i : itree E I + R \right) : itree E R :=match step_i with
    inl cont \Rightarrow tau (ITree.bind cont aloop_)
     inr r \rightarrow Ret rend.
```

```
Definition aloop {E : Type \rightarrow Type} {R I: Type}
              (step : I \rightarrow itree E I + R) : I \rightarrow itree E R :=
  cofix aloop_ i := _aloop (\lambda t \Rightarrow Tau t) aloop_ (step i).
```
Imp Denotational Semantics

```
Variant ImpState : Type \rightarrow Type :=
   GetVar (x : var) : ImpState valueSetVar (x : var) (v : value) : ImpState unit.
Context {eff : Type \rightarrow Type}.
Context {HasImpState : ImpState -< eff}.
Fixpoint denoteExpr (e : expr) : itree eff value :=
   match e with
     Var v \rightarrow \text{trigger} (GetVar v)
    | \lim_{n \to \infty} | \lim_{n \to \in| Plus a b \Rightarrow l \leftarrow denoteExpr a ;; r \leftarrow denoteExpr b ;; ret (l + r)
    | Minus a b = l + denoteExpr a ;; r + denoteExpr b ;; ret (l - r)
    | Mult a b \Rightarrow l \leftarrow denoteExpr a ;; r \leftarrow denoteExpr b ;; ret (l * r)
   end.
```

```
Definition while {eff} (t: itree eff B) : itree eff unit :=
  loop
     (\lambda \in \mathfrak{l} : \mathfrak{unit} + \mathfrak{unit} \Rightarrowmatch l with
          | inr \rightarrow ret (inl tt)
          | inl \rightarrow continue \leftarrow t;
                       if continue : B then ret (inl tt) else ret (inr tt)
         end) tt.
```

```
Fixpoint denoteStmt (s : stmt) : itree eff unit :=
  match s with
   Assign x e \Rightarrow v \leftarrow denoteExpr e ;; trigger (SetVar x v)
    Seq a b \Rightarrow denoteStmt a ;; denoteStmt b
    If ite \Rightarrowv \leftarrow denote Expr i ;;
    if is_true v then denoteStmt t else denoteStmt e
  I While t b \Rightarrowwhile (v \leftarrow denote Expr t ;;
               if is_true v
               then denoteStmt b ;; ret true
               else ret false)
  \vert Skip \Rightarrow ret tt
  end.
```