
1

Ryan Beckett*+ Nick Giannarakis* Devon Loehr*
Aarti Gupta* Ratul Mahajan! David Walker*

* Princeton University
+ Microsoft Research

! Intentionet/UW

NV

A platform for modelling and verifying routing protocols

2Modern Networks
are complicated things …

Traffic
Engineering Cost $$$

Security

Fault-
tolerance

Backup

3Modern Networks
and each device is configured separately …

...

...

...

......

......

...

4

5Good news! Some Solutions

𝒅
The data plane:

A snapshot at one instant in time
of how a network forwards traffic.

The control plane:
The algorithms that figure out
which routes to use and react to
environmental changes over time,
producing a series of data planes.

𝒅

fail

6Good news! Some Solutions

Data Plane Verification

Veriflow [Kurshid 2013]

HSA [Kazemian 2012]

NoD [Lopes 2015]

…

Anteater [Mai 2011]

Symmetries [Plotkin 2016]

NetKAT [Anderson 2014]

7Good news! Some Solutions

Control Plane Simulation

Control Plane Verification

[Gember-Jacobsen 2016]

[Beckett 2017]MineSweeper

ARC

Batfish [Fogel 2015]

C-BGP [Quotin 2005]

Bagpipe [Weitz 2016]

…

[Fayaz 2017]ERA

…

Data Plane Verification

Veriflow [Kurshid 2013]

HSA [Kazemian 2012]

NoD [Lopes 2015]

Anteater [Mai 2011]

…

Symmetries [Plotkin 2016]

reachability

no black holes

=

router or subnet equivalence

no transit

Properties (for all data planes produced)

no congestion

A Problem of Scale

1000 5000

Other technologies, such as simulation, suffer similar, though less severe trends.

industrial data centers, wans# of devices

MineSweeper
Verification

Time

500

1
0To Cope with Scale

Bonsai
Simulator

<your tool here>

Verifier

big network small network

Implement transformations that collapse symmetries or abstract away details

Transformations:
• Topological transformations: Bonsai [SIGCOMM 18], Origami [CAV 19]
• Message abstractions: ShapeShifter
• Divide and conquer tactics
• Conventional optimization [dead code, constant folding, slicing]
• Specialization [per destination, source-dest]

How should we build a tool suite for network reliability?

Batfish [Fogel et al, 2015]

Cisco
Juniper

ToolsConfigs

IR Characteristics:
• Indispensible: represents a very wide range of configs
• Massive: for route maps: 105 expressions, 23 statements (30-100LOC/class)
• Specialized, not orthogonal: 19 different expressions to “set” things: tags, AS path, …
• Non-compositional: can’t build complex structures from simpler ones
• Not reuseable: hard to reuse optimizations from one tool to another
• Inexpressive: new config features often need extensions; not designed as a tool target
• Designed for experts: deep knowledge of networks needed to grok it
• Semi-implicit semantics: some effects happen implicitly (need to look at simulator)

Intermediate Representation (IR)

Simulation
Verification
Compression

Batfish NV

Cisco
Juniper

Tools &
TransformersConfigs

NV Design Goals:
• Conventional: mostly ordinary (functions, records, options, …, dictionaries)
• Minimal & Orthogonal: one operation for record projection
• Compositional: complex data from simple primitives
• Expressive: new config features usually don’t need extensions
• Tractable: … but semantics can be translated into decideable logics (SMT)
• Designed for non-experts: deep knowledge of networks not needed to grok it
• Well-defined semantics: every program has a rigorous, mathematical meaning
• Explicit semantics: no implicit semantic side effects
• Verification support: facilities to declare unknowns, requirements and specifications

Batfish IR
Simulation
Verification
Compression

NV

Optimization
Specialization

Abstraction

Test Generation

Partitioning

Moral of the Story

To build reliable networking infrastructure in the 2020s,

use functional programming from the 1980s

to model network control planes.

Moral of the Story

“There are two kinds of applause: The kind you earn or ‘cheap applause,’
the kind you get by pandering to the audience I am a fan of both.”

-- Lady Gaga

Modelling a Routing Protocol

Thanks to Griffin, Wilfong and Sobrinho’s work on
Stable Paths Problem, Routing Algebras, Metarouting

2000-2005

18

Modelling a Routing Protocol (Instance)

Idealized RIP: shortest paths routing

Route announcements are integers that count
the number of hops to the destination

19

𝒅

Modelling a Routing Protocol (Instance)

20

𝒅

0

The origin creates an initial announcement
stating it has a path to destination dmessages have type int

Modelling a Routing Protocol (Instance)

21

𝒅

0

The origin creates an initial announcement
stating it has a path to destination d

The announcement is transmitted along
edges to neighbors, often modified (or
dropped) as it goes.

1

1

Modelling a Routing Protocol (Instance)

22

𝒅

0

The origin creates an initial announcement
stating it has a path to destination d

1

1

2

2

Modelling a Routing Protocol (Instance)

The announcement is transmitted along
edges to neighbors, often modified (or
dropped) as it goes.

23

𝒅

0

The origin creates an initial announcement
stating it has a path to destination d

1

1

2

2
When nodes receive multiple
announcements, they choose a best one

Modelling a Routing Protocol (Instance)

The announcement is transmitted along
edges to neighbors, often modified (or
dropped) as it goes.

24

𝒅

0

The origin creates an initial announcement
stating it has a path to destination d

When nodes receive multiple
announcements, they choose a best one

1

1

2

Modelling a Routing Protocol (Instance)

The announcement is transmitted along
edges to neighbors, often modified (or
dropped) as it goes.

25

𝒅

0

The origin creates an initial announcement
stating it has a path to destination d

When nodes receive multiple
announcements, they choose a best one

Eventually (hopefully), the system converges
on a solution: all nodes have selected the
best route amongst all available to them and
no more changes occur; nodes forward in
the opposite direction of announcements

1

1

2

Modelling a Routing Protocol (Instance)

The announcement is transmitted along
edges to neighbors, often modified (or
dropped) as it goes.

26

𝒅

0

The origin creates an initial announcement
stating it has a path to destination d

When nodes receive multiple
announcements, they choose a best one

Eventually (hopefully), the system converges
on a solution: all nodes have selected the
best route amongst all available to them and
no more changes occur; nodes forward in
the opposite direction of announcements

1

1

forwarding can usually be inferred
from the solution

opposite to the flow of messages

2

Modelling a Routing Protocol (Instance)

The announcement is transmitted along
edges to neighbors, often modified (or
dropped) as it goes.

27

𝒅

The origin creates an initial announcement
stating it has a path to destination d

When nodes receive multiple
announcements, they choose a best one

Eventually (hopefully), the system converges
on a solution: all nodes have selected the
best route amongst all available to them and
no more changes occur; nodes forward in
the opposite direction of announcements

Modelling a Routing Protocol (Instance)

The announcement is transmitted along
edges to neighbors, often modified (or
dropped) as it goes.

The NV Language

1

0

2

3

type attribute = option[int]

Idealized RIP

0

1

0

2

3

type attribute = option[int]

let nodes = 4

let edges = { 0=1; 0=2; 1=2; 1=3; 2=3; }

Idealized RIP

1

0

2

3

type attribute = option[int]

let nodes = 4

let edges = { 0=1; 0=2; 1=2; 1=3; 2=3; }

let trans edge x =

Idealized RIP

1

0

2

3

type attribute = option[int]

let nodes = 4

let edges = { 0=1; 0=2; 1=2; 1=3; 2=3; }

let trans edge x =
match x with
| None -> None
| Some i -> Some (i+1)

Idealized RIP

1

0

2

3

type attribute = option[int]

let nodes = 4

let edges = { 0=1; 0=2; 1=2; 1=3; 2=3; }

let trans edge x =
match x with
| None -> None
| Some i -> Some (i+1)

let merge node x y =
match (x,y) with
| (None, _) -> y
| (_, None) -> x
| (Some x’, Some y’) -> Some (min x’ y’)

let init node =
if node = 0 then Some 0 else None

Idealized RIP

1

0

2

3

type attribute = option[int]

...

(* all nodes can reach the destination *)
let assert node sol =

match sol with
None -> false

| Some x -> true

Adding Assertions

Assertion checking modes:
• SMT: Finds some solution that does not satisfy the assertion (or verifies all do)
• Simulation: Checks that an arbitrary solution satisfies the assertion (faster)

37

𝒅

Most networks are connected to the rest of the
internet through peer networks. These peers
may propagate arbitrary (well-formed) messages

In both cases, we need to model unknowns

Managing Unknowns

In large networks, many devices fail. Operators
need to reason about network behavior in the
presence of failures.

Peer YPeer X

failed link

1

0

2

3

type attribute = option[int]

symbolic fail01 : bool
symbolic fail02 : bool

Managing Unknowns: Link Failures

?

?

1

0

2

3

type attribute = option[int]

symbolic fail01 : bool
symbolic fail02 : bool

require !(fail01 && fail02)

Managing Unknowns: Link Failures

?

?

1

0

2

3

type attribute = option[int]

symbolic fail01 : bool
symbolic fail02 : bool

require !(fail01 && fail02)

let trans edge x =
if (edge = (0,1) && fail01)
|| (edge = (0,2) && fail02) then

None
else

...

Managing Unknowns: Link Failures

?

?

type ospf =
{ ospfAd: int; weight: int; areaType: int; areaId: int; }

type bgp =
{ bgpAd: int; lp: int; aslen: int; comms:set[int]; origin:int}

type rib = {
connected : option[int];
static : option[int];
ospf : option[ospf];
bgp : option[bgp];
selected : option[int];

}

type prefix = {ip:int32; len:int5}

type attribute = dict[prefix][rib]

More Realistic Protocols

type ospf = ...

type bgp = ...

type rib = ...

type prefix = ...

type attribute =
dict[prefix][rib]

Message Abstractions

This is a lot of bits for each message.
A simulator (or verifier) must process
a lot of messages.

For some properties, and many policies, we
don’t need to keep track of all that information.

Because the system is programmable, we
can construct abstractions relatively easily.

Not only can the abstract routing algorithms
be simulated more efficiently. They can lead to
new analysis ideas.

type bgp =
{ bgpAd. : int;

lp : int;
aslen : int;
comms : set[int];
origin : int;

}

Message Abstractions

type abstract_bgp = {
comms : set[int32];
origin : int;

]

An effective abstraction for reachability
For many networks no reduction in precision;

asymptotically faster

Scaling Trends:
Message Abstractions for Data Center Reachability

Concrete cost: O(tde)
• t = time for 1 prefix
• d = # of prefixes
• e = # of edges
• empirically: tde = n2 * root(n)

Abstract cost: O(te)
• many messages now have

the same value and can be
processed at the same time

• processing no longer
depends on the # prefixes

• empirically: te = n * root(n)

New Analyses via Abstraction:
BGP Hijacking Attacks

𝒅

Can my peer networks hijack traffic
destined for IP addresses that I own?

d?

New Analyses via Abstraction:
BGP Hijacking Attacks

𝒅

type origin =
Internal | External

type abs_bgp = {
comm : set[int32];
origin : set[origin];

]

d?

abstract
message
origins

Questions/Problems/ToDos
(a subset!)

Adding Dataplane Facts

𝒅

0

1

1

2

𝒅

0

1

1

2

Control plane propagation of routes Data plane propagation of traffic

ACL

Composing Protocols

𝒅 𝒅

0

1

1
BGP OSPF

𝒅

0

1

1

A meta-language for routing transformations?

type bgp = {
lp : int32;
comm : set[int32];
med : int32;
rid : int32;
as_len : int32;
as_origin : int32;

}

type bgp = {
comm : set[int32];
as_origin : int32;

]

program 2

program 1

The lower level, compact calculus isn’t always a win
One transformation requires identifying transfer functions
that are “the same”

But they aren’t actually ever exactly the same in BGP
because it adds the current node identity to the AS path

But we can show they are “close enough” in this special case

In Batfish, AS path extension is implicit; in NV, explicit and
gets in the way of identifying “similar” transfer functions

Solutions?

Solution 1 (the hack): Add annotations during translation that
says “this adding to the AS-path; ignore me”

Solution 2 (better?): Add modules to the NV language so you
can encapsulate the AS-path operations in a module. The
module encapsulates the differences.

Other thoughts?

Solutions?

Solution 1 (the hack): Add annotations during translation that
says “this adding to the AS-path; ignore me”

Solution 2 (better?): Add modules to the NV language so you
can encapsulate the AS-path operations in a module. The
module encapsulates the differences.

Other thoughts?

Final Goal

I hope functional programming
can actually help us understand
complex network protocols

𝒅

d?

I’m looking at you, iBGP!

