A Timed IO monad

David Janin
Univ. Bordeaux, CNRS, Bordeaux INP,
LaBRI, UMR 5800
France
janin@labri.fr

Abstract

We propose an application programming interface for re-
active, concurrent and timed system programming in pure
functional programing languages such as Haskell.

Simply said, we embed the IO monad into a timed IO
monad by extending the implicit IO monad states with ex-
plicit timing information. This yields the notion of timed
IO actions, that is, IO actions extended with specified du-
rations, that can be composed in sequence in the resulting
timed monad. Every complex timed actions induces an auto-
matically defined scheduling specification of its sub-actions.
Various tools are then proposed to measure and control the
time drift of a running timed action, that is, the difference
between the actual and the specified scheduling of these
sub-actions.

An extension of the asynchronous concurrent library also
offers the possibility to fork any timed action. The fork oper-
ator instantaneously returns a reference to the forked action
that can be used to retrieve, transform and combined, in a
safe and robust way, all the data dynamically (and timely)
produced by that action. The full expressiveness of the pro-
posed interface eventually appears when applying all of the
above to (some notion of) higher order streams, that, instan-
tiated over timed IO actions, provides a handy encoding of
(locally finite) timed IO signals.

1 Introduction

Context, motivation and objectives. An example of timed
programing is the programing of an interactive music system.
In the simplest approach, the behavior of such a system
alternates between:

(1) the computation of certain notes to be played, contribut-
ing to the specification of the music to be played!,

(2) the rendering of these notes in time, contributing to the
actual performance of that music.

One could think that, in order to realize such a behavior, it
suffices to play each note for its specified duration. However,
such an approach immediately yields a time leak. Indeed, the
actual rendering of the music is getting delayed, note after

1 The specification of a note to be played is typically defined by its pitch, its
expected duration, its velocity, etc..., possibly dynamically depending on
the environment inputs
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note, by the actual computation time of each note specifi-
cation. In other words, playing music in a even and regular
way necessitates to reduce the specified duration of each
note in order to compensate the actual duration of the com-
putation of its specification: a computation that is implicitly
(but wrongly) assumed to be of neglectable duration. Though
simple, the explicit programing of such reductions in order
to achieve a correct scheduling in time is repetitive, tedious
and error prone.

There appears the need for a timed application programing
interface that freely allows the programmer to declare certain
computations as instantaneous while some others have a
specified positive duration, in such a way that when running
a timed program:

(1) the specified temporal scheduling of that program shall
automatically derive from the (possibly dynamically) spec-
ified durations of the actions it contains,

(2) the actual temporal scheduling observed when running
that program shall match, within reasonable bound, the
specified temporal scheduling.

Additionally, and somehow conversely, given a running timed
program, often full of side effects such as a sub-program actu-
ally playing music, the programmer may also wish to extract
from running sub-program the dynamic information related
to their executions in order to reuse it, as input, into some
other sub-programs. There also appears the need for a timed
application programing interface such that:

(3) the temporal and returned data associated to any (effect-
full) timed execution of a program shall be possibly read
and freely reused by other programs in a safe (essentially
effect-free) and robust (deadlock free) way.

Our contribution. In this paper, we propose such a timed
programing interface within a pure functional programing
language such as Haskell, by simply lifting the IO monad
interface to a timed IO monad interface.

More precisely, based on the observation that passing time
is a side effect, we design a timed IO monad where timed
action are essentially defined as IO action extended with
timing information. Up to technical details, this is achieved
by extending the (implicit) IO monad state by an (explicit)
time stamp that refers to the expected or specified timestamp
in that state. As a result, at runtime, the difference between
the actual or real timestamp, as provided by the underlying
OS, and such an expected timestamp, as deriving from the
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duration specifications, called the time drift, is provably pos-
itive in any state. Moreover, various tools are available in
order to ensure and to check that, in practice, such a time
drift remains bounded and, depending on the underlying
timer, small.

Much like in the existing asynchronous concurrent library,
but extended to a timed setting, a notion of timed IO action
references, uniquely associated to running timed IO actions
is also defined. It allows for collecting and freely reusing,
essentially with no undesired side-effects, the dynamic infor-
mation created by and associated with these running timed
IO actions. Last, a notion of higher order streams, parame-
terized by a type constructor, allows the definition of timed
IO streams of actions and references that lift all the above
tools to timed data-flow programing.

Most concepts are presented via type classes and illus-
trated throughout by specific instances and uniformly de-
rived utility functions.

Organization of the paper. The timed monad class, that
refines the monad class, is first presented in Section 2. The
expected properties of the resulting set of timed primitives
combined with classical (untimed) primitives is stated via a
series of invariant laws.

In section 3, a timer type class is defined in order to bind
together time scale and duration type, timing and schedul-
ing functions, and timed monad states. Though keeping the
possibility to rely on other (possibly external) scheduling
mechanisms, a default timer instance is described, based on
ghe runtime and its concurrent library.

A concrete proposal for a timed IO monad instance is pre-
sented in Section 4 together with a simple parallel extension.
Its correctness is examined with a special attention brought
to the measure and control of time drift.

A more powerfull parallel extension is proposed in Sec-
tion 5 via a generic notion of references to running monad
actions. Simply said, monad references allow for accessing,
in a safe and robust way, to the information dynamically
produced by forked monad actions. Various invariant laws
are proposed in order to capture such an expected semantics.
Timed IO references are then defined as an instance of this
notion, again based on Haskell’s concurrent library.

A generic notion of monad streams is defined in Section 6
as a lifting of the classical lists data type with monad action
accessors. Combined with the notion of monad references,
this allows for developing numerous class instances and
functions over (asynchronous) monad streams such as, for
instance, the on-the-fly merge of two monad streams by
arrival time of data. Monad streams built with timed IO
actions are the timed IO streams that essentially behave like
(locally finite) timed IO signals.

Monad references are also extended to timed streams in
Section 7 so that monad streams can be forked returning a
one-way broadcast communication channel, called a monad
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stream reference, that can be used to replay, share, duplicate
the resulting streams of data without replaying the associated
side effects.

As one last illustration of the combined simplicity and
robustness of our approach, we eventually propose and in-
stanciate, in the timed IO monad, a generalized notion of par-
allel fork of (traversable) finite structures of (timed) monad
actions that returns a (timed) stream of monad references
ordered by termination time. An linear time on-the-fly fold
of these values then easily derives from such a parallel fork.

Related works are discussed in Section 8 before concluding
in Section 9 with some performance tests and ongoing work
in progress. The resulting library shall be made available on
the internet under open source licence.

2 The timed monad type class

Before getting into technicalities, let us briefly review what
we mean by a time scale and by a timed monad.

Timestamp, duration and time scale. Simply said, a times-
tamp is defined here as the duration elapsed from some fixed
but unknown initial time. We expect timestamps, therefore
durations as well, to be totally ordered in a time scale. How-
ever, while the sum of two durations makes perfect sense,
the sum of two timestamps does not.

This suggests defining a duration type as any type instance
of the Num and Ord class of Haskell, and the associated
timestamp type as some restricted encapsulation of durations.
In Haskell, this is done by putting:

newtype Time d = Time d deriving (Eq, Ord)

where d is the duration type and Time d is the timestamp
type, with the associated functions:

duration :: Num d = Time d — Time d — d
duration (Time dy) (Time d;) = (dy — d5)
shift :: Num d = Timed — d — Time d
shift (Time dy) d, = Time (d; + d3)

that measure the (relative) duration between two timestamps,
and that shift a timestamp by some duration.

Expected vs real time. As already mentioned in the intro-
duction, a key point of our proposal lays in the distinction
between:

(1) expected timestamps used for scheduling specification,
(2) actual timestamps observed along scheduling execution,

This distinction induces a timing performance measure: the
time drift defined as the difference between the actual times-
tamp and the expected timestamp.

It is a desirable property that, in a running timed program,
such a time drift is kept positive so that no action is actually
scheduled before its specified time, and bounded so that
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any specified duration above that bound can accurately be
handled by the underlying scheduler.

Timed monad. Simply said, a timed monad is a monad
where every action take some specified duration. The in-
terface of a timed monad is detailed by the following type
class type:

class (Monad m, MonadlO m, Num d, Ord d)
= TimedMonad m d | m — d where
now :: m (Time d)
drift::md
runTIO = ma — 10 a
delay::d — m ()

where now instantaneously returns the current specified
timestamp, drift instantaneously returns the current time
drift, that is, the difference between the actual timestamp (as
provided by the underlying runtime scheduler) and the spec-
ified timestamp (as stored in the underlying monad state),
runTIO turned timed monad actions into IO actions that can
be run, and, delay d is an action that waits until the current
specified time stamp shifted by the given positive duration
is eventually passed for real.

Defining such a type class, as any other classes later in the
text, allows for distinguishing an adequate set of primitive
functions that shall be defined in any instance, from which
other utility functions may derive in a uniform way.

Timed action duration. A first exemple of a derived func-
tion is the duration of an action that can be defined by:

dur :: TimedMonad md = ma— md
dur m = do

ty < now

_e—m

t; < now

return (duration t; ty)

Observe that computing a duration implies running the ac-
tion together with its side-effects. This first means that a
duration is a dynamic value that can depend on when it is
measured. This also means that function dur shall essentially
be used for stating the various laws that shall be satisfied by
timed monad instances.

Invariant laws for timed monad. We review below the
main super classes of the class TimedMonad, their invariant
laws , as well as the additional laws ? that shall be satisfied
when used in a timed monad instance. This includes the class
Functor given by:

2Two timed actions m; and m; are stated equivalent, a property denoted by
my = my, when they have the same type and, in any context of use, return
equal values and produce the same observable side effects by, let’s say, going
through the same series of monad states.
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class Functor m where
fmap:(a—>b)>ma—->mb

that allows to lift a function into a monad. Any instance shall
satisfy the two functor laws:

m fmap id m (1)
fmap f (fmap g m) = fmap (fog) m ()

together with an additional duration law:

dur (fmap f m) (3)

that is, timed IO action durations shall be preserved under

fmap f. This also includes the class Monad given by:

dur m =

class Monad m where
return::a — ma
(>=)uma—(a—=>mb) > mb

that allows to lift a value into a monad action with return, and
to combine sequentially two actions with the bind operator
(>=), the second being parametrized by the value returned
by the first. Any instance shall satisfy the three monad laws:

fa (4)
m (5)
m>=(Ax - f x>=g) (6)

return a >= f
m >= return
(m>=f)>=g

plus the duration laws:

dur (returna) = return0 (7)

dur (my) >=

Ad — fmap (d+) (dur my)  (8)
that is, return actions take no time, and the duration of two
actions composed by the bind operator is the sum of the du-

rations of these actions. Last, this includes the class MonadIO
given by:

dur (my > my)

class MonadIO m where
liftl0:: 10 a > ma

that allows for lifting any IO action to a timed monad action.
It shall satisfy the two lifting laws:

liftlO o return =

LiftlO (m >= f)

with the duration law:
dur (liftlO m) =

that states that every lifted action has zero duration and the
additional retraction law:

m = runTIO (liftTIO m) (12)

that states that, up to untimed monad action equivalence,
we shall have runTIO o lift TIO = id. Observe that over timed
actions, the reverse direction does not hold since we have

m % liftlO (runTIO m) (13)

return 9)

liftIO m>= (liftl0o f)  (10)

liftlO m > return 0 (11)
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as soon as the timed action m has a non zero duration.

3 The timer type class

In a given timed monad, the same time scale shall be used
both for expected timestamps, as stored in the underlying
timed monad states, and for actual timestamps, as handled
by some underlying timing and scheduling functions. This
is achieved by defining the type class Timer which every
instance uniquely bind these features together:

class (Ord d, Num d) = Timer s d | s — d where
getStateTime :: s — Time d
shiftState :: s > d — s
initialState :: 10 s
getRealTime :: s — 10 (Time d)
waitUntil :: s > Time d — 10 s

There, type d refers to some duration type, and type s refers
to some associated timed monad state type. Every timed
state shall embed an expected (or specified) timestamp that
can either be accessed via the function getStateTime or be

shifted by some positive duration via the function shiftState.

Additionally, every timed state embeds a (hidden) handle
towards a (possibly external) timer® that can be accessed via
the IO actions:

(1) initialState, that initializes such a timer and returns the
corresponding initial state where the initial expected
timestamp equals the initial actual timestamp,

(2) getRealTime s, that returns the actual (or real) timestamp
in a state s as provided by that timer,

(3) waitUntil s t, that waits for a wake up call from that
timer sent right after the expected timestamp ¢ is actually
passed for real, and returns the timed state updated with ¢
as the new expected timestamp.

For convenience, in the sequel, we shall also use the following
derived functions:

compareStateTime s; s,
= compare (getStateTime s;) (getStateTime s;)
latestState s; sy
= if (getStateTime s; < getStateTime s;)
then s, else s;

definable thanks to the fact that timestamps inherit from the
duration total order.

A default timer instance. By default, using ghc runtime as
a timer, durations are measured in nanoseconds and timed
states are just defined as timestamps on these durations.

31t is common feature in a (distributed) timed system that a timer is located
in one device and shared by the other devices. This also allows us to define
an active timer that turns out to be more accurate than the default one as
discussed in the conclusion.
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More precisely, thanks to the clock and concurrent libraries
of Haskell, we put:

newtype Nano = Time Integer

deriving (Eq, Ord, Num, Integral)
getSystemTime = do

rt < getTime Monotonic

return $ Time $ (fromInteger o toNanoSecs) rt

instance Timer (Time Nano) Nano where

getStateTime = id

shiftState = shift

initialState = getSystemTime

getRealTime _ = getSystemTime

waitUntil _ (Time d) = do
Time rt « getSystemTime
threadDelay $ fromIntegral $ div (d — rt) 1000
return (Time d)

with threadDelay expecting a microseconds argument.

4 The timed IO monad instances

Simply said, a timed IO action is defined as an IO action that
not only acts on the (implicit) IO state, but also acts on an
explicit timed state. In other words, we put:

newtype TIO s d a = TIO (s — IO (s, a))

parameterized by timed state type s and duration type d that
form an instance of the type class Timer.

Functor, monad and monadlO instances. With no sur-
prise, the mapping TIO s d that maps any type a to the type
TIO s d a is monad functor with:

instance Functor (TIO s d) where
fmap f (TIO m) = TIO $ Asy — do
(s1,a) < m s
return (si, f a)
instance Monad (TIO s d) where
return a = TIO (As — return (s, a))
(>=) (TIO @) f = TIO$ As — do
(s;,v) < a; s
let TIO a; = (f v) in a; 5,

Since the IO monad is a strict monad, the timed IO monad is
also strict, i.e. in a bind, the first timed IO actions is neces-
sarily executed in order to produce the output state that is
given to the next action. As a consequence, the bind operator
is also truly sequential.

Every IO action can also be lifted into an instantaneous
timed IO action thanks to the following instance:
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instance MonadIO (TIO s d) where
liftiO m = TIO $ As — m >= Aa — return (s, a)

Since the underlying timed state is left unchanged this lift
operator indeed creates timed IO actions that are (specified
as) instantaneous.

With an aim at keeping a small time drift, such a lift opera-
tor should either be applied to an IO action which execution
time is neglectable compared to the expected time accuracy,
or, as detailled below, followed by a delay action with a du-
ration large enough to compensate the real duration of the
lifted IO action. So far in our proposal, it is programmer duty
to ensure that such a lifting is properly used.

The timed I0 monad instance. Thanks to the class Timer,
we eventually define the timed IO monad by:

instance Timer s d = TimedMonad (TIO s d) d where
now = TIO $ As — do
return (s, getStateTime s)
drift = TIO $ As — do
rt « getRealTime s
let st = getStateTime s
return (s, duration rt st)
runTIO (TIO f) = do
s « initialState
(wa) < fs
return a
delay d = TIO $ As — do
case d > 0 of
True — do
let t; = shift (getStateTime s) d
s1 < waitUntil s
return (s, ())
False — return (s, ())

with any timer instance as a parameter.

Observe that, as specified above, from the current specified
timestamp t = getStateTime s, the action delay d does not
delay the action by d unit of time. Instead, it waits until the
new expected time stamp #; = shift t d is actually (just)
passed for real. As a consequence, provided the time drift
before a delay is smaller than its duration parameter, the
timedrift after the execution of that delay is minimal and
only depends on the time accuracy of the associated timer.

Correctness of the timed 10 monad. One can easily check
that properties (1)-(12) are satisfied. The standard laws fol-
lows directly from the fact that TIO s d is a simple variation
on a classical state monad. The new laws follow from the
way all the above defined functions act on timestamps in
timed states.

Thanks to the specification of the waitUntil function, the
delay action yields a positive time drift. Since every other
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definable timed action has an actual duration greater than
its specified duration, we have:

(I) in every timed state, the time drift is positive,

However, keeping a bounded time drift is not ensured by
default. Instead:

(I1) it is programmer duty to keep the time drift bounded
which can be done by, say, inserting long enough delays
between each series of actions specified as instantaneous

in order to compensate the time drift created by the actual
execution of these actions.

Limited parallelism. As an example of an instantaneous
lifting of an IO action, one can define simple parallelism by

simpleForkTIO :: TIO s d a — TIO s d ()
simpleForkTIO (TIO m) = $ A s — do

_ « forkIO (do {_ « m s;return () })

return (s, ())
simpleParTIO = TIOsd a— TIOsd b— TIOsd b
simpleParTIO a b = (simpleForkTIO a) > b

that launches in parallel two actions, returning the value of
the second action as soon as it terminates.

With parallelism, there appears the fact that the bind op-
erator in the timed IO monad shall rather be understood
as a synchronization operator between two timed actions.
In other words, the bind product allows overlaps between
synchronized timed behavior and thus appears as a fairly
generic version of the tiled product proposed in [1, 9] for
music.

Another IO action lifting. Alternatively, there is also a
timed lift of IO actions. This can be useful when wishing to
wait on an input IO action. With such a timed lifting, the
timedrift is set, upon exit, to a minimal one, with a specified
timestamp that shall match the actual timestamp correspond-
ing to the termination of the lifted action. Such a timed lifting
is defined by:

liftTimedIO :: TimedMonad md =10 a - ma
liftTimedIO m = do

a « liftlo m

drift >= delay

return a

Observe that IO action lifting is defined uniformly on any
timed monad instance, musch like we have defined [iftIO
itself. Could it be used instead as the default lifting of 10
actions ? The answer is no as illustrated by the timed IO
monad. Indeed, with such a timed lifting, the law (9) cannot
be satisfied since the function return is specified to produce
zero duration timed actions while liftTimedIO o return hardly
ever does with any realistic timer since any computation
takes some time.
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5 The monad reference class

We aim now at providing a more general notion of paral-
lelism where all values and timing information produced by
the execution of a forked action can be accessed in a safe
and sound way in other actions. Inspired by Haskell asyn-
chronous concurrent library, we eventually define a fairly
general notion of monad action reference that, simply said,
can be understood as broadcast channel from a uniquely
referenced running monad action towards any monad action
possessing a copy of that reference.

Monad reference class. As the concept of monad reference
is fairly orthogonal to the concept of timed monad, this
notion is conveniently described over arbitrary monads by:

class Monad m = MonadRef m where
type Ref m:x —
forkToRef :: m a — m (Ref m a)
readRef :: Ref ma — ma
tryReadRef :: Ref m a — m (Maybe a)
parReadRef :: Ref m a — Ref m b — m (Either a b)

where:

(1) type (Ref m) is the type of monad action references,

(2) function forkToRef launches a monad action and returns
(in no time) a reference to it,

(3) function readRef possibly waits for and eventually re-
turns the value returned by the referenced action, with
function tryReadRef a non blocking of the same function,

(4) function parReadRef returns the value of the earliest
terminated referenced action when that fastest action is
terminated.

A key intention behind such a definition is that: while a
running monad action may perform some side effects, running
a reading action via a reference to such a monad action shall
essentially produce no or harmless side effects* .

Monad reference laws. A number of laws are expected to be
satisfied by any instance of that class. Though not stabilized
yet, they aim at capturing monad reference semantics as well
as the above intention. Indeed, the first monad reference
law essentially describes the semantics of monad references
stating that:

m = forkToRef m >= readRef (14)

that is, reading the data produced by a just forked action
just replay that action, all side effects included ! The second
monad reference law, or idempotence law:

readRef r = readRef r > readRef r (15)

4A possible definition for an action m to produce no or harmless side effects
could be that m = forkToRef m>> m. Examples in the IO monad are return a
that has harmless side effect and print "foo" that has not.
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shall capture the fact that readRef actions have no or harm-

less side effects as they can be repeated in a non noticeable

way. The third monad reference law, or commutativity law:
readRef ry = Ax; — readRef r;
>= A x; — return (x, x)

= readRef ry>= Ax; — readRef r|
>= Ax; — return (x1, x) (16)
shall capture the fact that readRef actions are bound to the

execution of a unique running action therefore commute one
with the other.

Timed racing. As a usage example, one can run two actions
in parallel and waits for the first to terminate thanks to the
following derived function:

parRun :: MonadRef m = m a — m b — m (Either a b)
parRun m; my = do {r; « forkToRef my;
ry < forkToRef my; parReadRef ri rs}

Observe that in parRun m; m;y, both actions m; and my
are executed till they terminate. This differs from the race
function behavior in the asynchronous concurrent library.
Clearly, both functions parReadRef and parRun may have
non deterministic outcome as shown by:

parRun (return "foo") (return "foo")

that returns either Left "foo" or Right "foo".

Timed IO references. For the timed I0 monad we put:

newtype TIORef s d a = TIORef (s, MVar (s, a))

where, in a timed IO reference value of the form TIORef (s, v)
the state s shall be the start state of the referenced action and
the mutable variable v shall contains, upon termination of
the referenced action, the stop state and the returned value
of that action. These yields the following instance of monad
references:

instance Timer s d = MonadRef (TIO s d) where
type Ref (TIO s d) = TIORef s d
readRef (TIORef (_,v)) = TIO$ As — do
(s1, a) « readMVar v
return (latestState s s1, a)
tryReadRef (TIORef (_,v)) = TIO $ As — do
¢ « tryReadMVar v
case c of
Nothing — return (s, Nothing)
FJust (s1, a) — return (latestState s s;, Just a)
forkToRef (TIO m) = TIO $ As — do
v «— newEmptyMVar
_ « forkIO (m s >= putMVar v)
return (s, TIORef (s, v))




Timed 10 monad

for the simplest functions, where, we return the lastest state
since read actions can be launched before or after the refer-
enced action is terminated. The code for the parallel reading
of references is a bit more involved:

parReadRef (TIORef (_, v1)) (TIORef (_, v2))
=TIO$ As — do
v < newEmptyMVar
_ « forkIO (toMVar Left v, v)
_ « forkIO (toMVar Right v, v)
(s1, x1) « takeMVar v
case x; of
Left _ — do
¢ « tryReadMVar v,
case ¢ of
Nothing — return (latestState s s1, x1)
FJust (sz, Vo) — return$
earliest s (s1, x1) (s2, Right v,)
Right _ — do
¢ « tryReadMVar v,
case c of
Nothing — return (latestState s s, x1)
FJust (sz, Vo) — return$
earliest s (s1, x1) (s2, Left v2)
where
toMVar dir vr v = do
(s, a) « readMVar vr
_ « tryPutMVar v (s, dir a)
return ()
earliest s (s, x1) (s2, %) =
case compareStateTime s; s; of
GT — (latestState s s3, x2)
_ — (latestState s s1, x1)

since, in the case the two referenced actions are already
terminated, we have to select the earliest terminated one,
regardless of what read action has won the race for accessing
the mutable variable v. We also make sure that every forked
thread terminates.

Timed monad with references. In the case a timed monad
has monad references, we also want to read via references
the timing information produced by referenced actions, that
is, its duration. So we define the class type:

class (TimedMonad m d, MonadRef m)
= TimedMonadRef m d where
durRef ::Ref ma— md

As application examples, the following derived function cre-
ates a delay that last exactly the same time as the referenced
running action:
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delayRef :: TimedMonadRef m d = Ref ma — m ()
delayRef r = do

ty < now

d « durRef r

I < now

delay (d — duration t; )

Replaying a referenced timed IO action without its associated
side effects but the same duration can then be done thanks
to the following derived function:

replayRef :: TimedMonadRef m d = Ref ma — ma
replayRef r = delayRef r > readRef r

Observe that both delayRef and replayRef can be used as
soon as their parameter is available, therefore right after a
fork, even in the case the referenced action is not terminated
yet.

Timed IO durations via references. In the timed IO monad,
retreiving the duration of a referenced timed IO action can
be done as follows:

instance Timer s d =
TimedMonadRef (TIO s d) d where
durRef (TIORef (sp,v)) = TIO $ As — do
(s1, ) « readMVar v
return (latestState s s,
duration (getStateTime s1) (getStateTime sy))

6 Monad streams

We aim now at developing a type for modeling (finite or
infinite) timed signals as they may appear in timed systems.
Since passing time is a side effect, this eventually leads us
to the following definition of higher order streams that are
eventually applied to monad functors.

Higher-order streams. The higher-order streams we shall
use are defined by:

newtype Stream f a
= Stream { next :: f (Maybe (a, Stream f a))}

where f : % — * is a function over types.

Though the way to access values may may depend on
the chosen type function f, every accessed element of type
Stream f a eventually provides:

(1) either Nothing, that tells the stream terminates
(2) or Just (a, sc), that tells the stream contains the value a
and continues via sc.

Applied to the Identity functor, we recover a type functor
essentially equivalent to the classical list type functor.
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Monad streams. Streams of monad actions, simply called
monad streams, are defined as elements of type Stream m a
for some monad functor m. As a particular case, we put:

type STIO s d a = Stream (TIO s d) a

for the type of timed IO streams.

To some extent, timed IO streams correspond to timed
signals, but without the memory leaks inherent to explicit
timestamp handling. Indeed, a monad stream is essentially
a single monad action that, when no longer evaluated, is
simply garbage collected.

Functor instance. The type constructor Stream m built
over a monad m is a functor as shown by:

instance Monad m = Functor (Stream m) where
fmap f (Stream m) = Stream $ do
ce—m
case c of
Nothing — return Nothing
Fust (a, me) — return $ Just (f a, fmap f mc)

which amounts to traversing the monad stream by recur-
sively executing the embedded monad actions.

Horizontal monoid. Streams can be composed one after
the other, yielding the following monoid structure called the
horizontal monoid.

instance Monad m = Monoid (Stream m a) where
mempty = Stream (return Nothing)
(©) (Stream m) s = Stream $ do
ce—m
case c of
Nothing — next s
Fust (a, sc) — return'$ Fust (a, sc O s)

Observe that, in the case the first monad stream is infinite,
the second monad stream will be delayed endlessly which,
if repeated, may create a memory leak. Still, the following
monoid laws are satisfied:

s = mempty s (17)
s = sO mempty (18)
510(2083) = (5105) 05 (19)

Iterator examples. Thanks to the following function that
binds a monad action to a monad stream:

bindToStream :: Monad m =

m a — (a — Stream m a) — Stream m a
bindToStream m f = Stream $

m >= Aa — return $ Just (a,f a)

David Janin

one can define various iterators for stream creations such as
unconditional iteration:

iterateStream :: Monad m =
(a—> ma) > a— Stream ma
iterateStream f a = bindToStream (f a) (iterateStream f)

or conditional iteration that depends on the fact that the
iterated function produces a value or not,

iterateStreamMaybe :: Monad m =

(a > m (Maybe a)) — a — Stream m a
iterateStreamMaybe f a = Stream $ do

c—fa

return $ fmap (Ab — (a, iterateStreamMaybe f b)) ¢

or iteration until some referenced action terminates:

iterateStreamUntil :: MonadRef m =
Ref mb— (a— ma) - a— Streamma
iterateStreamUntil r f a = Stream $ do
tc « tryReadRef r
case tc of
Just _ — return Nothing
Nothing — next $ bindToStream (f a)
(iterateStreamUntil r f)

Merge and vertical monoid. With monad references, monad
streams can also be merged by termination time of the em-
bedded actions by:

merge :: MonadRef m =
Stream m a — Stream m a — Stream m a
merge (Stream my) (Stream my) = Stream $ do
r < forkToRef my
ry < forkToRef my
¢ « parReadRef ry 1
case ¢ of
Left Nothing — readRef r,
Right Nothing — readRef r
Left (Fust (a,sc)) — return’$
Just (a, merge sc (Stream $ readRef 1,))
Right (Just (a, sc)) — return $
Just (a, merge (Stream $ readRef 1) sc)

This illustrates the intrinsic asynchronism of monad streams
where values are produced...when they are produced ! One
can also observe that the merge operator is associative and
commutative, even with the non determinism induced by
parReadRef, with the empty stream mempty (again) as neu-
tral element. This commutative monoid is called the vertical
monoid.
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Monad instance. With merge, the functor Stream m turns
out to be a monad functor as shown by:

instance MonadRef m = Monad (Stream m) where
return a = (Stream o return o Just) (a, empty)
(>=) (Stream m) f = Stream $ do
ce—m
case c of
Nothing — return Nothing
Fust (a, mc) — next $ merge (f a) (mc >= f)

where the bind operation is defined as the concurrent merge
of all the parameterized monad streams generated from the
values produced (in time) by the left monad stream.

An important aspect of such an operation is that all these
merges are schedule when the corresponding production ac-
tions are terminated. This therefore perfectly fits application
to timed system programing, with explicit time with timed
IO actions, or even implicit time with regular IO actions.

7 Monad stream references

Much like we have defined action references bound to run-
ning action instances, we define below a notion of monad
stream references, that are produced by forked monad streams
and that can read in a safe and robust way. In other words, a
monad stream reference acts as an unbounded broadcast fifo
channel® from a uniquely defined running stream monad.

Monad stream reference. The type of monad stream refer-
ence is simply defined from streams by the following type
synonym:

type StreamRef m = Stream (Ref m)

Forking a (effect-full) monad stream into a stream of refer-
ences is done as follows:

forkStreamToRef :: MonadRef m =
Stream m a — m (StreamRef m a)
forkStreamToRef s = do
r « forkToRef (evalAndFork s)
return $ Stream r
where
evalAndFork (Stream m) = do
ce—m
case ¢ of
Nothing — return Nothing
Fust (a, sc) — do
rc < forkToRef (evalAndFork sc)
return $ Just (a, Stream rc)

> As such, monad stream references may lead to memory and time leak if
used without care.
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where, each monad reference, when later read, is either pro-
ducing Nothing, when the stream terminates, or the value
FJust (a, vc) with the read value a and a sort of a continuation
reference vc.

Conversely, reading a stream of monad references by con-
verting it into a (essentially effect-free) monad streams can
be achieved by the following function:

readStreamRef :: MonadRef m =
StreamRef m a — Stream m a
readStreamRef (Stream v) = Stream $ do
¢ « readRef v
case ¢ of
Nothing — return Nothing
FJust (a, rc) — return $ Just (a, readStreamRef rc)

Though clearly useful, just as forkToRef and readRef, these
functions do not induce an instance of MonadRef for Stream m
with StreamRef m as associated reference type. Indeed,such
an instance would yield a notion of streams of streams, that
is, elements of type Stream (Stream m) a, which, to state it
simply, sounds a bit hard to manipulate.

Heterogeneous merge and split. Quite in the style of ar-
rows programming[10] though in an asynchronous setting
(see remark below), one can define heterogeneous merge and
split by

mergeH :: MonadRef m =
Stream m a — Stream m b — Stream m (Either a b)
mergeH s; s, = merge (fmap Left s1) (fmap Right s;)

together with the associated split function defined by

splitH :: MonadStreamRef m =
Stream m (Either a b) — m (Stream m a, Stream m b)
splitH s = do
r « forkStreamToRef s
return (fstStream (readStreamRef r),
sndStream (readStreamRef r))

defined thanks to the projections defined via:

filterMaybe :: MonadRef m =
(a = Maybe b) — Stream m a — Stream m b
filterMaybe f (Stream m) = Stream $ do
ce—m
case c of
Nothing — return Nothing
Just (a, mc) — case (f a) of
Nothing —
let Stream mr = filterMaybe f mc in mr
Fust b — return $ Just (b, filterMaybe f mc)
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by

fstStream :: MonadRef m =
Stream m (Either a b) — Stream m a
fstStream s = filterMaybe fromLeft s
where fromLeft (Left a) = Just a
fromLeft _ = Nothing

sndStream :: MonadRef m =
Stream m (Either a b) — Stream m b
sndStream s = filterMaybe fromRight s
where fromRight (Right b) = Just b
fromLeft _ = Nothing

It occurs that, up to side effects, that is, assuming actions have
essentially no side effects but explicit changes of state, the
type Stream m (Either a b) with fstStream and sndStream
stream projection functions, is the categorical product of
Stream m a and Stream m b.

Monad stream reference class. Last, combining the notion
of monad references with the above definition of streams of
references, we eventually define an extension of the MonadRef
class defined by:

class MonadRef m = MonadStreamRef m where
forkAllToRefs :: Traversable t =
t (m a) — m (StreamRef m a)

where function forkAllToRefs shall fork all monad actions
stored in a (finite) traversable structure and returns a stream
of references towards these actions, ordered by termination
time. With timed IO streams we put:

instance Timer s d =
MonadStreamRef (TIO s d) where
forkAllToRefs | = TIO $ As — do
v < newEmptyMVar
mapM_ (A(TIO m) —
forkIO (m s >= putMVar v)) 1
rv < newEmptyMVar
forkIO (toSTIORef (lengthl) v s rv)
return (s, Stream (TIORef (s, rv)))
where
toSTIORef 0 _ s rv =do
putMVar rv (s, Nothing)
toSTIORef n v srv =do
(s1, a) « takeMVar v
rvc < newEmptyMVar
let s, = latestState s s;
forkIO (toSTIORef (n—1) v s, rvc)
putMVar rv (sp, Just (a,
Stream (TIORef (s, rvc))))
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where we are using a single mutable variable to receive all
information produced by the forked timed IO actions.
Combined with sort of a folding function defined over

streams®:

foldStream :: Monad m = (b — a —» m b) —
b— Streamma— mb

foldStream f b (Stream m) = m >= (maybe (return b)
(AMa,s) = (f b a) >= Ab — foldStream f b s))

one can finally define:

foldOnTime :: (MonadStreamRef m, Traversable t) =
boa->mb-b—o>t(ma)->mb
foldOnTime f b c =

forkAllToRefs ¢ >= foldStream f b o readStreamRef

that forks all timed monad actions stored in a structure and
performs a linear time on-the-fly folding of the returned
values ordered by termination time.

No arrow instance. As a final remark, it is known that
the Arrow programming interface[10] is quite appealing for
data flow (therefore stream) programing. However, it seems
bound to synchronous flow programming. Indeed, the cat-
egorical product of streams of type a and b is, in arrow
programing, the type of streams of type (a, b). As detailed
above, this is not the case with monad streams where the
categorical product is rather, by asynchronism, the type of
streams of type Either a b. This means that monad streams
do not provide any instance of the Arrow type class.

8 Related Works

In functional programing languages, there already are many
proposals for programing timed reactive concurrent systems.
These proposals range from the synchronous language fam-
ily [25] possibly extended with modern polymorphisms a
with Reactive ML [18], to the many variants of functional
reactive program (FRP) series initiated with FRAN [6] and
continued with Yampa [22], to name but a few.

Still, the amount of recent publications concerning new
type systems [12, 13, 15] or refined interfaces [7, 23, 24, 27]
for FRP as well as the fairly recent extension proposals to
higher-order timed features for synchronous languages [4, 5],
suggest that the topic is still very active and yet not stabilized.

One of the reason is that, aside all these concrete, efficient
and useful development of programing languages, there is
yet no agreements on what could be the underlying relevant
mathematical model for timed value semantics, a model from
which robust primitives should be derived.

Of course, timed signals, that is, functions from time to
values, constitute quite an obvious model for timed value

®Strictly speaking, the type Stream m a itself is not foldable since most
functions on streams yields values in the monad m.



Timed 10 monad

semantics, with interesting mathematical properties [16, 17].
However, the unrestricted use of explicit timestamps is a
well known source of memory leaks [15, 24]7. Synchronous
programing languages, somehow also based on the signal
model [2, 3], provide safe and efficient timed programing
interfaces, but only by enforcing severe syntactical or typing
contraints on programs.

In other words, while timed signals provide models for
describing what are timed values, they do not induce pro-
graming interfaces adequate enough that tell how timed
values should be accessed, combined and produced in an
efficient, safe and robust way. As a recent illustration of this
fact, the rather exhaustive study of timed signals in a do-
main theoretical setting [11] still fails by itself to induce any
programing interface that would be adequate in the sense
depicted above.

In this paper, we follow a somehow orthogonal approach
initiated by Hudak with the notion of Polymorphic Tempo-
ral Media [8]. There, it is suggested that timed values could
be modeled via the algebraic properties of their combina-
tors, that is, one sequential and one parallel operators, two
operators that, as later shown, can be merged into a single
one : the tiled product [9]. Although initially designed by
modeling music systems, such an approach has some ap-
peal for generic programing purpose. Indeed, these algebraic
properties yield some notion of normal form for temporal
media value [8] which, in turn, induces some canonical con-
structors and accessors [1], without any explicit timestamps,
therefore not so much memory leaks.

Could such an approach be truly extended to more general
applications with IO was far from being clear and not even
suggested in the afore mentioned papers. Indeed, algebraic
modeling approaches, often limited to some first order al-
gebraic data types, often seem bound to yield only static
structures, missing all the dynamic features necessary for
programing reactive timed systems. The timed IO monad
presented here is, in that respect, quite a success, especially
through the notion of (higher-order) monad streams that
eventually offers both the comfort and flexibility of monad
programming while preserving the mathematical elegance
of algebraic approaches.

Last, a key point of our proposal clearly lays in the defini-
tion of monad references. Such a concept is not new. Though
under a different name, it is for instance defined and used
in the asynchronous concurrent library of Haskell [14, 19].
However, our treatment of monad action references is some-
what different. For instance, with parReadRef, we do not
seek, as with function race, at stoping the latest action as
soon as the earliest is terminated. On the contrary, monad
references are used here to replay in a safe way, till their ends,

"Incidentally, the notion of monad stream defined in these pages offers yet
another solution to the memory leak problem stated and solved by Ploeg
and Claessen in FRPNow [24].
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referenced monad actions. Also, to the best of our knowledge,
no axiomatization of this concept had yet been attempted.

9 Conclusion

Monad action, instance and reference. 1t is a well estab-
lished facts that, thanks to monad modeling, pure functional
programing can be safely extended to programming with
side effects [20, 26]. Simply said, the monad approach offers
a clear distinction between :

(1) monad action programs that can be duplicated and
combined at will in a pure functional programing style,

(2) monad action instances, that is, running programs, that
are uniquely defined and positioned at runtime in the
underlying monad state space,

the values returned by monad action instances being re-
injected into monad action programs only via the bind oper-
ator.

In this paper, somehow extending this approach, timed
monads and monad references provide together :

(1) timed action programs, simply referred to as timed
actions, with (possibly dynamically) specified durations,
that can be duplicated and combined at will (in parallel
or in sequence) in a pure functional programing style,
timed action instances, obtained by running timed ac-
tions, with actual durations, that cannot be duplicated
nor combined one with the other since they are al-
ready and uniquely located in the spacetime of the
underlying running system,

timed action references, uniquely associated to forked
timed action instances, that can be used to read, du-
plicate, share and combine freely, robustly and safely,
within new timed actions, the runtime information
dynamically created by action instances.

The notion of monad references thus induces a new and
versatile interface through which running monad actions
can be safely and robustly re-injected into monad action
programs, more freely than with the bind operator only.

Time drift control. As detailled throughout, the timed 10
monad is designed in such a way that, when running a com-
plex timed action, the time drift remains positive, documented
and somewhat controlable thanks to the design of delay ac-
tions. Of course, we have not yet offered any mechanism that
can ensure that the time drift is bounded. Yet, we expect that
the notion of timed monad and reference is formal enough to
allow for developing some type system for such a purpose.

Garbage collected signals. Lifting timed IO actions to timed
IO streams, we eventually recover a fairly robust notion of
timed signal which can safely be used thanks to the em-
bedding of signal continuations into timed IO actions. Most
importantly, the garbage collector capacity to get rid of un-
used pieces of timed signals is preserved, just as any monad
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action is collected when non longer referenced, in the GC
sense, at runtime.

Performance tests. The schema below gives an overview
of the time accuracy one can achieve under ghc using our
library.

This performance test consisted in running timed streams
at certain frequency (on the horizontal logarithmic scale)
that accumulates all measured time drift before displaying
the average or maximum timedrift (on the vertical logarith-
mic scale). It was run on an average laptop. The diagonal
curve maps each frequency to its corresponding time period.
The blue curve (starting below the other one) describes the

Maximum time drift in ms per signal frequency in kHz
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measured timed drifts when using the default ghc timer, im-
plemented using threadDelay. The red curve (starting above
the other) describes the measured timed drifts when using
an active timer, implemented as an independant thread.

These performance tests show that with high frequency
signal, from 100 kHz to 60 kHz, the processor is saturated
and the resulting timedrift, just function of the duration of
the performance test, is way higher than the corresponding
time period. The default timer is the more efficient for it
requires less computational power. From 60 kHz, the active
scheduler becomes about a thousand times more efficient
than the default one on the average, though, as observed with
maximum time drift, it remains sensitive to the processor
usage at any frequency.

The frequencies between 100 Hz and 20 Hz are the fre-
quencies at which realtime signal audio processing can be
performed, with a latency from 10ms to 50ms, hardly notice-
able by human hears. This suggests that, with both timers,
realtime audio processing can be performed in Haskell; a
possibility we shall soon experiment as a real timed system
programing test case.

The need for safe interruptions. As probably noticed by
readers well aware of concurrent programming features, we
have not considered interruption handling. The main rea-
son for such an omission is that designing an interruption
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mechanism safely applicable to temporal media and, beyond,
automation, is far from a mere lifting of the underlying run-
time or OS interruption system. Indeed, with application as
simple as MIDI music playing, a safe interruption of a music
stream necessitates to stop by sending a note off event every
note started with a note on event that is still running. Also, in
a context of timed system programing, new interruption type
such as a change speed signal would certainly be of interest
though leading to hybrid system programing as discussed
below.

Towards hybrid system programming. One can observe
that the proposed notion of timer is, by itself, a simple hybrid
signal, that maps real time to expected time, much like a
metronome does in music. Saying so, one missing feature of
our proposal appears : the capacity to change the underlying
tempo; although, doing so would turn our notion of timer
into fairly general hybrid signal, mapping the real time scale,
as handled by the underlying OS, to some symbolic time scale,
now handled by every timed program.

This suggests that our proposal could be extended towards
hybrid system modeling, extending the proposed notion of
timer into some notion of hybrid signal handler, equipped
with all a menagerie of hybrid signal monitoring and con-
trolling functions. Then, as a related open question, one may
ask how the yet quite implicit algebraic framework induced
by our application oriented approach could possibly be re-
lated with the recent theoretic proposal of hybrid system
modeling by hybrid monads [21].
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