
A timed IO monad

David Janin
Bordeaux INP, UMR CNRS LaBRI,

University of Bordeaux
May 2019

The need for a timed monad

Music playing example
Plays every second n the note s n for half a second.

What is wrong with that code ?

perform :: Int → IO ()

perform n = do {play (s n) (5 ∗ 10ˆ5); perform (n + 1)}
where
play n d = noteOn n >> threadDelay d >>

noteOff n >> threadDelay d

The need for a timed monad

Every computation takes some time,
every delay resumes too late

Specified vs actual scheduling

Specified/expected scheduling

time drift

Actual/real scheduling

Time leak
Caused by a positive (good) but unbounded (bad) time drift
defined, at any instant, by:

time drift = actual timestamp - specified timestamp

The need for a timed monad

General specifications
A timed monad shall provide:

(1) specified positive or zero duration for each action,
(2) induced expected scheduling of actions,
(3) performed actual scheduling of actions,
(4) tools to control/observe (positive) time drift, that is,

the (miss)match between expected and actual
scheduling,

(5) an other useful features such as safe and robust IO,
concurrency, . . .

Side remarks

(1) passing time is a side effect,
(2) every programmer knows monad programing style.

The need for a timed monad

Back to our exemple
Within the default timed IO monad, we would essentially write the
same code:

perform :: Int → TIO ()
perform n = do {play (s n) (5 ∗ 10ˆ5); perform (n + 1)}

where
play n d = liftIO (noteOn n) -- specified duration 0

>> delay d -- specified duration d
>> liftIO (noteOff n) -- specified duration 0
>> delay d -- specified duration d

but, in order to compensate the time drifts created by all other
computations, the actual duration of delay d shorter than its
specified duration of d microseconds.

Structure of the talk

Timed monad

Monad with references

Monad streams

Monad stream references

Conclusion

1. Timed monad

Timed programming with class

Timed Monad type class

newtype Time d = Time d deriving (Eq,Ord)
shift (Time t) d = Time (t + d)
duration (Time t1) (Time t2) = t1 − t2

with timestamp type (Time d) and duration type (d),

class (Monad m,MonadIO m,Num d ,Ord d)
⇒ TimedMonad m d | m→ d where
runTIO ::m a→ IO a --
delay :: d → m () -- negative d treated as zero
now ::m (Time d) -- current specified timestamp
drift ::m d -- current actual time drift

with all timed actions specified as instantaneous but delay d
specified with duration d , . . . , and with delay d that resumes as
soon as the new specified timestamp is actually passed for real.

Timed Monad type class

The specified duration of an action is computed by:

dur m = do {t0 ← now ; ← m;
t1 ← now ; return (duration t1 t0)}

In addition to superclasses laws, we shall have:

dur m ≡ dur (fmap f m) (1)
dur (return a) ≡ return 0 (2)

dur (m1 >>m2) ≡ dur (m1)>>= λd → fmap (d+) (dur m2) (3)

for every timed action m, m1 and m2, and

dur (liftIO io) ≡ liftIO io >> return 0 (4)
io ≡ (runTIO ◦ liftTIO) io (5)

for every IO action io, therefore m 6≡ (liftIO ◦ runTIO) m whenever
the timed action m has non zero duration.

Timed lifting of IO actions

As an example of a derived function:
A timed lifting of an IO action:

liftTimedIO :: TimedMonad m d ⇒ IO a→ m a
liftTimedIO m = do
a← liftIO m -- specified duration 0
drift >>= delay -- specified duration : the actual time drift
return a -- here time drift is nearly zero

where, upon exit, the expected timestamp essentially matches the
specified time stamp, since the actual duration of drift >>= delay
shall be nearly zero.

A timed IO monad instance
Define timed IO monad states as (implicit) IO monad states
extended with (explicit) timestamp, therefore, timed IO actions by:

newtype TIO a = TIO (Time Integer → IO (Time Integer , a))

with expected functor, monad and monadIO instances:

instance Functor TIO where
fmap f (TIO g) = TIO $ λs → do
(t, a)← g s
return (t, f a)

instance Monad TIO where
return a = TIO $ λs → return (s, a)
(>>=) (TIO f) g = TIO $ λs → do
(t, a)← f s
let TIO h = g a in h t

instance MonadIO TIO where
liftIO m = TIO $ λs → m >>= λa→ return (s, a)

The timed IO monad instance

Then we put:

instance TimedMonad TIO Integer where
now = TIO (λs → return (s, s))
drift = TIO (λs → systemTime >>=

λ r → return (s, duration r s))
delay d = TIO $ λs → if (d 6 0) then (return (s, ()))

else $ do
let t = shift s d -- expected timestamp target
r ← systemTime -- current actual timestamp
threadDelay (duration t r) -- t just passed for real
return (t, ())

runTIO (TIO f) = systemTime >>= f >>= return ◦ snd

with systemTime that returns system timestamp in micro seconds.

What we actually need for generic timed IO monads

The class type: Timer s d | s → d
that defines and binds together:

I a duration type d , with derived timestamps and time scale,
I a possible external scheduler,
I a timed state type s with embedded expected timestamp and

scheduler handle,
I the associated runtime calls systemTime, systemDelay with

(current) timed state argument,
I an initialization action initialState.

Timed IO monad instances (simple performance tests)

0,01

0,1

1

10

100
0,01 0,1 1 10 100

Average time drift in ms per signal frequency in kHz

0,01

0,1

1

10

100
0,01 0,1 1 10 100

Maximum time drift in ms per signal frequency in kHz

Realtime audio processing

Realtime audio processing

2. Monad with references

Safe communicating processes with class,

musing around ideas of Simon Marlow in Control.Concurrent.Async.

On monad programming

When programming within a monad, there are:
(1) action programs that can be freely reused, duplicated,

in a pure functional programming style,
(2) action running instances that cannot be reused,

duplicated, etc. . . , for they are uniquely located in
the underlying monad state space.

In every strict monad, function bind ::m a→ (a→ m b)→ m b
(implicitly) encodes two “functions” actionExec and continueWith
performed in this order:

(1) (2)

actionExec

continueWith

Action programs Action instances

Monad references
A monad reference shall be a broadcast channel from a uniquely
associated running monad action, which can be freely read, in a
safe and robust way.

(1) (2)

forkToRef

readRef

Action programs Action instances

with, generalizing async library, the following class type:

class Monad m⇒ MonadRef m where
type Ref m :: ∗ → ∗
forkToRef ::m a→ m (Ref m a)
readRef :: Ref m a→ m a
tryReadRef :: Ref m a→ m (Maybe a)
parReadRef :: Ref m a→ Ref m b → m (Either a b)

Safely ? Robustly ?

Safely
Deadlock free communication schema for a process can only access
the data produced by another if it “sees” its fork.

Robustly
No or harmless side effects when reading monad references for
reading a process reference does not imply re-executing that
process and its side effects.

Example in music (with actions replaced by streams of actions)
Given a playing music running process, the reference to that
process could be the score of the played music. Reading the score
does not imply replaying the music.

Monad reference laws
Monad with references instance shall satisfy the following laws:

I Basic semantics

m ≡ forkToRef m >>= readRef (6)

I Idempotence

readRef r ≡ readRef r >> readRef r (7)

I Commutation

readRef r1 >>= λx1 → readRef r2
>>= λ x2 → return (x1, x2)

≡ readRef r2>>= λx2 → readRef r1
>>= λx1 → return (x1, x2) (8)

Parallel reading

As a derived function:

parRun ::MonadRef m⇒ m a→ m b → m (Either a b)
parRun m1 m2 = do {r1 ← forkToRef m1; r2 ← forkToRef m2;

parReadRef r1 r2}

with an induced race as illustrated by:

parRun (return "foo") (return "foo")

that returns either Left "foo" or Right "foo".

Timed IO references
Reference to timed IO actions are defined by:

newtype TIORef a =
TIORef (Time Integer ,MVar (Timed Integer , a))

where, in TIORef (s, v), there shall be the start timestamp s with
the mutable variable v filled with stop timestamp and returned
value upon termination of the referenced running timed action.

instance MonadRef TIO where
type Ref TIO = TIORef
readRef (TIORef (, v)) = TIO $ λs → do
(s1, a)← readMVar v
return (max s s1, a)

forkToRef (TIO m) = TIO $ λs → do
v ← newEmptyMVar
← forkIO (m s >>= putMVar v)

return (s,TIORef (s, v))
....

with some more lines of code for parReadRef . . .

Timed monad with references

Combining timed monad with monad references yields:

class (TimedMonad m d ,MonadRef m)⇒
TimedMonadRef m d where
durRef :: Ref m a→ m d

with:

instance TimedMonadRef TIO Integer where
durRef (TIORef (s0, v)) = TIO $ λs → do
(s1,)← readMVar v
return (max s s1,

duration (getStateTime s1) (getStateTime s0))

Replaying a timed monad reference

As application example, one can replay a referenced timed monad
action with same returned value and same duration by:

delayRef :: TimedMonadRef m d ⇒ Ref m a→ m ()
delayRef r = do
t0 ← now
d ← durRef r
t1 ← now
delay (d − duration t1 t0)

replayRef :: TimedMonadRef m d ⇒ Ref m a→ m a
replayRef r = delayRef r >> readRef r

Reading, replaying or expanding a forked process reference

• Forked process: r ← forkToRef (delay 5)

• Read reference: delay 2>> readRef r

• Replay reference:delay 2>> replayRef r

• Expand reference:delay 2>> expandRef (2∗) r

expandRef f r = do {
t0 ← now ; a← readRef r ; d ← durRef r ; t1 ← now
let d1 = f d − duration t1 t0 in case (d1 > 0) of
True → delay d1
False → liftIO (print "Non causal shrink")

return a}

3. Monad streams

To achieve way more expressiveness

Higher-order streams

Lists extended with a type constructor for head/tail access.

newtype Stream f a
= Stream {next :: f (Maybe (a, Stream f a))}

with next s :: f (Maybe (a, Stream f a)) “evaluated” into:
(1) either Nothing for the terminated stream ,
(2) or Just (a, sc) for a produced value a

and a stream continuation sc .

Timed IO streams

Timed IO streams

type STIO a = Stream TIO a

that essentially behaves like timed IO signals. . .

With good behavior

(1) GC with full capacity to prevent memory leaks,
(2) data flow programing with bounded memory usage,

solving some problems arising with FRP approach.

Example: timed standard IO with timed IO streams
Input as a timed IO stream:

streamInChar :: STIO Char
streamInChar = Stream $ do
b ← liftIO $ hIsEOF stdin
if b then return Nothing
else do
a← liftTimedIO getChar
return $ Just (a, streamInChar)

and streaming to output:

streamOutChar :: STIO Char → STIO ()
streamOutChar (Stream m) = Stream $ do
c ← m
case c of
Nothing → return Nothing
Just (a, s)→ do
liftIO $ putChar a
return $ Just ((), streamOutChar s)

Horizontal monoid structure

Putting streams one after the other:

instance Monad m⇒ Monoid (Stream m a) where
mempty = Stream (return Nothing)
(3) (Stream m) s = Stream $ do
c ← m
case c of
Nothing → next s
Just (a, sc)→ return $ Just (a, sc 3 s)

with the second stream delayed for ever when first is infinite.

Vertical monoid structure

Merging streams by local termination time:

merge ::MonadRef m⇒
Stream m a→ Stream m a→ Stream m a

merge (Stream m1) (Stream m2) = Stream $ do
r1 ← forkToRef m1
r2 ← forkToRef m2
c ← parReadRef r1 r2
case c of
Left Nothing → readRef r2
Right Nothing → readRef r1
Left (Just (a,mc1))→ return $
Just (a,merge mc1 (Stream $ readRef r2))

Right (Just (a,mc2))→ return $
Just (a,merge (Stream $ readRef r1) mc2)

A resulting associative and, moreover, commutative, operator still
with empty stream as neutral element.

Induced asynchronous monad

The induced (non standard) monad instance:

instance MonadRef m⇒ Monad (Stream m) where
return a = (Stream ◦ return ◦ Just) (a, empty)
(>>=) (Stream m) f = Stream $ do
c ← m
case c of
Nothing → return Nothing
Just (a,mc)→ next $merge (f a) (mc >>= f)

where the bind operation is defined by the merge of all
parameterized monad streams from when there are produced !

The asynchronous bind of streams with monad references

m a1 a2 a3

f (a1)

f (a2)

f (a3)

m >>= f

b1,1 b1,2

b2,1 b2,2

b3,1 b3,2

b1,1 b1,2b2,1 b2,2b3,1 b3,2

4. Monad stream references

Or unbounded fifo chanel

Monad stream references

Monad streams can also be forked and referenced by:

type StreamRef m = Stream (Ref m)

with stream references reading given by:

readStreamRef ::MonadRef m⇒
StreamRef m a→ Stream m a

readStreamRef (Stream v) = Stream $ do
c ← readRef v
case c of
Nothing → return Nothing
Just (a, rc)→ return $ Just (a, readStreamRef rc)

Monad stream references

and streams forking into references given by:

forkStreamToRef ::MonadRef m⇒
Stream m a→ m (StreamRef m a)

forkStreamToRef s = do
r ← forkToRef (evalAndFork s)
return $ Stream r

where
evalAndFork (Stream m) = do
c ← m
case c of
Nothing → return Nothing
Just (a, sc)→ do

rc ← forkToRef (evalAndFork sc)
return $ Just (a, Stream rc)

And more
Forking monad actions in traversable structures, and sorting them
by termination time:

forkAllToRefs :: Traversable t ⇒
t (m a)→ m (StreamRef m a)

with an associated (linear time) on-the-fly folding

foldStream ::Monad m⇒ (b → a→ m b)→
b → Stream m a→ m b

foldStream f b (Stream m) = m >>= (maybe (return b)
(λ(a, s)→ (f b a)>>= λb → foldStream f b s))
--

foldOnTime :: (MonadStreamRef m,Traversable t)⇒
(b → a→ m b)→ b → t (m a)→ m b
foldOnTime f b c =
forkAllToRefs c >>= foldStream f b ◦ readStreamRef

5. Conclusion

That’s more than enough for now. . .

Conclusion

I We thus have defined:

Timed IO monad = Timed monad + monad references
+higher order streams + IO

on top of Haskell IO monad + Haskell concurrent library.
I This extension provides timed streams programming while

preserving GC capacity to keep memory bounded.

Future directions of research

I Theoretical study of monad references in CT ?
I Static analysis tools for detecting:

I time contraction ⇒ non causal behavior,
I time expansion ⇒ unbounded buffering,

in timed IO stream functions ?
I Safe interruption mechanism for timed streams ?
I Extension to hybrid system : from timer to signal handler ?
I Synchronous vs asynchronous streaming ?
I and more experiments, e.g. audio processing and music. . .

Thanks for your attention

Any question ?

	Timed monad
	Monad with references
	Monad streams
	Monad stream references
	Conclusion

