
Liquidate your assets
Reasoning about resource usage in Liquid Haskell

MARTIN A.T. HANDLEY, University of Nottingham, UK
NIKI VAZOU, IMDEA Software Institute, Spain
GRAHAM HUTTON, University of Nottingham, UK

Liquid Haskell is an extension to the type system of Haskell that supports formal reasoning about program
correctness by encoding logical properties as refinement types. In this article, we show how Liquid Haskell
can also be used to reason about program efficiency in the same setting, with the system’s existing verification
machinery being used to ensure that the results are both meaningful and precise. To illustrate our approach, we
analyse the efficiency of a range of popular data structures and algorithms, and in doing so, explore various
notions of resource usage. Our experience is that reasoning about efficiency in Liquid Haskell is often just as
simple as reasoning about correctness, and that the two can naturally be combined.

1 INTRODUCTION
Estimating the amount of resources that are required to execute a program is a key aspect of
software development. Unfortunately, however, performance bugs are as difficult to detect as they
are common [Jin et al. 2012]. As a result, the problem of statically analysing the resource usage, or
execution cost, of programs has been subject to much research, in which a broad range of techniques
have been studied, including resource-aware type systems [Çiçek et al. 2017; Hoffmann et al. 2012;
Hofmann and Jost 2003; Jost et al. 2017; Wang et al. 2017], program and separation logics [Aspinall
et al. 2007; Atkey 2010], and sized types [Vasconcelos 2008].

Another technique for statically analysing execution cost, inspired by the early work in [Moran and
Sands 1999] on tick algebra, is to reify resource usage into the definition of a program by means of a
datatype that accumulates abstract computation “steps”. This technique has two main approaches:
steps can either accumulate at the type level inside an index, or at the value level inside an integer
field. Formal analysis at the type level has been successfully applied in both Agda [Danielsson 2008]
and, more recently, Coq [McCarthy et al. 2017], and recent work in [Radiček et al. 2017] developed
the theoretical foundations of the value-level approach.

In this article, we take inspiration from [Radiček et al. 2017] and implement a monadic datatype to
measure the abstract resource usage of pure Haskell functions. We then use Liquid Haskell’s [Vazou
2016] refinement type system to statically prove bounds on resource usage. Our framework supports
both the standard approach to cost analysis, which is known as unary cost analysis and aims to
establish upper and lower bounds on the execution cost of a single program, and the more recent
relational approach [Çiçek 2018], which aims to calculate the difference between the execution costs
of two related programs or between one program on two different inputs.

Reasoning about execution cost using the Liquid Haskell system has two main advantages over
most other formal cost analysis frameworks [Radiček et al. 2017]. First of all, the system allows
correctness properties to be naturally integrated into cost analysis, which helps to ensure that cost
analyses are meaningful. And secondly, the wide range of sophisticated invariants that can be
expressed and automatically verified by the system can be exploited to analyse resource usage in
specific circumstances, which often leads to more precise and/or simpler analyses.

Authors’ addresses: Martin A.T. Handley, University of Nottingham, UK; Niki Vazou, IMDEA Software Institute, Spain;
Graham Hutton, University of Nottingham, UK.

2019. XXXX-XXXX/2019/3-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: March 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Martin A.T. Handley, Niki Vazou, and Graham Hutton

For example, Liquid Haskell can automatically verify that the standard sorting function in the
library Data.List returns a sorted list (of type OList a) with the same length as its input, even when
the result is embedded in the Tick datatype that we use to measure resource usage:

{−@ sort :: Ord a⇒ xs : [a]→ Tick {zs : OList a | length s == length xs } @−}

Applying our cost analysis to this function then allows us to prove that the maximum number of
comparisons required to sort any list xs is O (n log2 n), where n ≡ lenдth xs:

{−@ sortCost :: Ord a⇒ xs : [a]→ { tcost (sort xs) <= 4 ∗ length xs ∗ loд2 (length xs) + length xs } @−}

Moreover, we can also show that the maximum number of comparisons becomes linear in the case
when the input list is already in a sorted order:

{−@ sortCostSorted :: Ord a⇒ xs : OList a→ { tcost (sort xs) <= length xs } @−}

The contributions of the article are as follows:
– We implement a new library, RTick, which can be used to formally reason about the resource

usage and correctness of pure Haskell programs (section 3).
– We demonstrate the practical applicability of our library by providing a wide range of case

studies, including sophisticated relational properties and four sorting algorithms. Three detailed
case studies are presented in section 4. The remainder, which are summarised in Table 1 at the
end of section 4, are freely available online.

– We prove that our cost analysis is sound using the metatheory of Liquid Haskell (section 5).
The article is aimed at readers who are familiar with the basic ideas of Liquid Haskell [Vazou

2016], but no previous experience with formal reasoning about efficiency is assumed. Section 2
introduces our approach using a number of examples, section 3 explains how the system is im-
plemented, section 4 presents three case studies, section 5 develops the supporting theory, and
finally, sections 6 and 7 compare with related work and conclude. Our system is freely available on
GitHub [Handley and Vazou 2019], along with all of the examples from the article.

2 ANALYSING RESOURCE USAGE
In this section, we exemplify our library’s intrinsic and extrinsic approaches to analysing resource
usage, which support both unary and relational cost analysis. Each example also demonstrates how
correctness properties can be naturally integrated into cost analysis, and we conclude this section by
discussing how to interpret our analyses in practice.

2.1 Intrinsic cost analysis
In intrinsic cost analysis, the resources that a function uses are declared inside the type signature of
the function, and are automatically checked by Liquid Haskell.

Example 1: Append. We start by analysing the number of recursive calls made by Haskell’s list
append operator (++). We define the operator (++) that is similar to append, but lifted into our Tick
datatype using applicative methods (which are formally defined in section 3):

(++) :: [a]→ [a]→ Tick [a]
[] ++ ys = pure ys
(x : xs) ++ ys = pure (x:) </ > (xs ++ ys)

That is, if the first argument list is empty, the second list ys is simply embedded into the Tick
datatype using pure, which records zero cost. In turn, if the first list is non-empty, the partially
applied result (x:) is embedded using pure and applied to the result of the recursive call. To record
the cost of the recursive call we use the operator (</ >), a variant of the applicative operator (<∗>)
that sums the costs of the two arguments and increases the total by one.

, Vol. 1, No. 1, Article . Publication date: March 2019.

Liquidate your assets 3

Now that we have defined the new append operator, we can use Liquid Haskell to encode additional
properties by means of a refinement type specification, such as the following:

{−@ (++) :: xs : [a]→ ys : [a]
→ { t : Tick {zs : [a] | length zs == length xs + length ys } | tcost t == length xs } @−}

This type states that the length of the output list is given by the sum of the lengths of the two input
lists: a correctness property; and that the cost of appending two lists in terms of the number of
recursive calls required is given by the length of the first list: an efficiency property. Liquid Haskell
is able to automatically verify both properties without any further assistance from the user.

Example 2: Merge. Next, we analyse a different resource: the number of comparisons made when
merging two ordered lists. As before, we lift the standard merge function into the Tick datatype. This
time, however, we use the (</ >) operator to increase the cost each time a comparison is made:

merge :: Ord a⇒ [a]→ [a]→ Tick [a]
merge xs [] = pure xs
merge [] ys = pure ys
merge (x : xs) (y : ys)
| x <= y = pure (x:) </ > merge xs (y : ys)
| otherwise = pure (y:) </ > merge (x : xs) ys

The resource usage of the merge function depends on the values of the input lists, so we cannot
easily establish a precise bound on its execution cost. We can, however, use Liquid Haskell to
automatically check upper and lower bounds on its cost:

{−@ merge :: Ord a⇒ xs : OList a→ ys : OList a
→{ t : Tick {zs : OList a | length zs == length xs + length ys }

| tcost t <= length xs + length ys
&& tcost t >= min (length xs) (length ys) }@−}

That is, in the worse case, merge performs length xs + length ys comparisons, as both input lists may
need to be completely traversed to produce an ordered output. Conversely, in the best case, we only
require min (length xs) (length ys) comparisons, as merge terminates as soon as one of the input
lists becomes empty. Note that the above type uses the ordered list type constructor, OList, which is
defined using abstract refinements [Vazou et al. 2013] as follows:

{−@ type OList a = [a]<{λx y → x <= y }> @−}

Hence, the refinement type for merge also states that merging two ordered lists returns an ordered
list with length equal to the sum of the two input lengths. Once again, building the cost analysis on
top of Liquid Haskell allows us to naturally combine correctness and efficiency properties.

2.2 Extrinsic cost analysis
In extrinsic cost analysis, we use refinement types to express theorems about resource usage, and
then define Haskell terms that inhabit these types to prove the theorems. In this approach, verification
is not automatic, as proof terms are manually provided by the user, but we can express efficiency
properties that are not intrinsic to function definitions. For example, we can relate the costs of
different functions, and analyse their resource usage on specific subsets of their domains.

Example 3: Merge sort. Using the merge function from the previous example, we can define a
function that implements merge sort, with the following refinement type:

{−@ msort :: Ord a⇒ xs : [a]→ Tick {zs : OList a | length zs == length xs } @−}

, Vol. 1, No. 1, Article . Publication date: March 2019.

4 Martin A.T. Handley, Niki Vazou, and Graham Hutton

This type captures two correctness properties of merge sort, namely that the output list is sorted,
and has the same length as the input list. To analyse the cost of msort in terms of the number of
comparisons made, we need to use logarithmic knowledge that is not embedded in Liquid Haskell.
Instead of augmenting the definition of msort with proof terms, we can use the extrinsic approach.
That is, we specify appropriate theorems outside of the function’s definition and prove them manually.
The following two theorems capture upper and lower bounds on cost:

{−@ msortCostUB :: Ord a⇒ {xs : [a] | pow2 (length xs) } →{ tcost (msort xs) <= 2 ∗ length xs ∗ loд2 (length xs) }@−}

{−@ msortCostLB :: Ord a⇒ {xs : [a] | pow2 (length xs) } →{ tcost (msort xs) >= (length xs / 2) ∗ loд2 (length xs) }@−}

The first theorem states that the number of comparisons required by msort is bounded above by
O (n loд2 n), where n is the length of the input list. The second states that the number of compar-
isons is bounded below by O (n loд2 n). In both cases, because merge sort proceeds by repeatedly
splitting the input list into two parts, we assume the input length to be a power of two, specified by
pow2 (length xs). This highlights the flexibility of the extrinsic approach: even though it is reasonable
to use this assumption for cost analysis, it would be unreasonable to impose this restriction for all
inputs on which msort is applied. The proofs of these theorems can be constructed using the proof
combinators of section 3, and are available online [Handley and Vazou 2019].

Example 4: Constant-time comparison. The extrinsic approach lets us describe arbitrary program
properties, including those that compare the relative cost of two functions, or the same function
applied to different inputs. This is known as relational cost analysis [Çiçek 2018]. Here, we adapt an
example from [Çiçek et al. 2017] to show how relational cost can be encoded in our setting.

In cryptography, a program adheres to the “constant-time discipline” if its execution time is
independent of secret inputs. Adhering to this discipline is an effective countermeasure against timing
attacks, which can allow intruders to infer secret inputs by measuring variations in execution time.
Using relational cost analysis, we can prove that a program is constant-time without having to show
that it has equal upper and lower bounds on its execution cost (for example, by performing two
separate unary analyses). To demonstrate this, we use our library to analyse the execution cost of a
function that compares two equal-length passwords represented as lists of binary digits:

{−@ compare :: xs : [Bit]→ {ys : [Bit] | length ys == length xs }
→ { t : Tick Bool | tcost t == length xs } @−}

compare :: [Bit]→ [Bit]→ Tick Bool
compare [] [] = pure True
compare (x : xs) (y : ys) = pure (&& x == y) </ > compare xs ys

We assume that the equality (==) and conjunction (&&) functions are both constant-time, therefore,
we only measure the number of recursive calls made during compare’s execution.

As we have assumed that the computations performed during each recursive step are constant-time,
we can prove that compare is a constant-time function by showing that it requires the same number
of recursive calls when comparing any stored password p against any two user inputs u1 and u2:

{−@ ple compare @−}
{−@ compare :: p : [Bit]→ {u1 : [Bit] | length u1 == length p } → {u2 : [Bit] | length u2 == length p }
→ { tcost (compare p u1) == tcost (compare p u2) } @−}

compare :: [Bit]→ [Bit]→ [Bit]→ Proof
compare [] = ()

compare (: ps) (: us1) (: us2) = compare ps us1 us2

The proof of this theorem follows immediately from the definition of compare, in particular, from
the fact that Liquid Haskell can automatically verify a precise bound on its execution cost (see
compare’s type signature: tcost t == length xs). Consequently, our proof has a trivial base case and

, Vol. 1, No. 1, Article . Publication date: March 2019.

Liquidate your assets 5

an inductive case that recursively calls the inductive hypothesis, with all the details being automated
using Liquid Haskell’s proof by logical evaluation (PLE) tactic [Vazou et al. 2017].

Example 5: Append’s monoid laws. As a final example, we outline how extrinsic cost analysis can
be used to calculate the difference in execution cost for two related programs. This is also a primary
application of relational cost analysis. Consider the familiar monoid laws for the append operator:

[] ++ ys == ys left identity
xs ++ [] == xs right identity

(xs ++ ys) ++ zs == xs ++ (ys ++ zs) associativity

These properties can be proved correct in Liquid Haskell via equational reasoning [Vazou et al.
2018]. However, although the two sides of each property give the same results, each side does not
necessarily require the same amount of resources. This observation can be made precise by proving
the following properties of the annotated append operator, (++):

[] ++ ys <=> pure ys
xs ++ [] >== length xs ==> pure xs

(xs ++ ys) >>= (++ zs) >== length xs ==> (xs ++) =<< (ys ++ zs)

Recall from example 1 that the (++) operator records the number of recursive calls made during
append’s execution. Using this notion of cost, the first property above states that the left identity law
is a cost equivalence. That is, [] ++ ys and ys evaluate to the the same result, and moreover, both
require the same number of recursive calls to append. We make this precise by relating the annotated
version of each side using the cost equivalence relation <=>. Note that ys must be embedded in the
Tick datatype using pure in order for the property to be type-correct.

On the other hand, the right identity and associativity laws are cost improvements in the left-to-
right direction. That is, both sides of each property evaluate to the same result, but in each case the
right-hand side requires fewer recursive calls to append. Again, we make this precise by relating the
corresponding annotated definitions. Moreover, we make the cost difference explicit using quantified
improvement, written >== n ==> for a positive cost difference n, by showing that each right-hand
side requires length xs fewer recursive calls than its corresponding left-hand side.

We return to the notions of cost equivalence, cost improvement, and quantified improvement in
the next section, where we discuss our library’s implementation and prove the second property as
an example. Subsequently, in section 4, we use quantified improvement to systematically derive an
optimised-by-construction reverse function from a high-level specification.

2.3 Interpreting cost analysis
Our library allows users to analyse a wide range of resources. Specifically, the Tick datatype can
measure any kind of resource whose usage is additive, in the sense that we only ever add (or subtract)
costs. Nonetheless, the correctness of a cost analysis depends on appropriate cost annotations being
added to a program by the user. As such, it is the user’s responsibility to ensure that such annotations
correctly model the intended usage of a resource. In section 5 we use Liquid Haskell’s metatheory to
formally prove the soundness of the specifications with respect to the user provided annotations.

Assuming that an annotated program does correctly model the intended usage of a particular
resource, then the question is: how can a user relate its (intrinsic or extrinsic) cost analysis back to
the execution cost of its unannotated counterpart? In other words, what is the interpretation of upper,
lower, and precise bounds on the resource usage of annotated expressions in practice?

Ordinary Haskell datatypes. It should be clear from the examples above that any bound (upper,
lower, or precise) established on the execution cost of an annotated function that manipulates ordinary
Haskell datatypes is a worst-case approximation of actual resource usage. For example, consider the

, Vol. 1, No. 1, Article . Publication date: March 2019.

6 Martin A.T. Handley, Niki Vazou, and Graham Hutton

annotated append function (++) that measures the number of recursive calls made by (++). Then
tcost ([a, b, c] ++ ys) == 3 implies that the evaluation of [a, b, c] ++ ys makes three recursive
calls to (++). Three recursive calls to (++) corresponds to the function being fully applied.

With this in mind, an intuitive way to describe our library’s cost analysis in this instance is to use
terminology from Okasaki [1999]: the analysis assumes that functions operating on ordinary Haskell
datatypes are monolithic. That is, once run, such functions are assumed to run until completion. This
is not true in practice because Haskell’s lazy evaluation strategy proactively halts computations to
prevent functions from being unnecessarily (fully) applied. Hence, from this viewpoint it is clear that
such analysis provides worst-case approximations of actual cost.

Memoisation. For efficiency, lazy evaluation relies on computations being able to share intermedi-
ate results so that expressions are not (unnecessarily) re-evaluated when they are needed on multiple
occasions. By default, however, annotated expressions do not model sharing, that is, memoisation.
This is true for annotated functions regardless of their input type. For example, the square func-
tion below records the resource usage of its input n :: Tick Int twice, even though its unannotated
counterpart, square n = n ∗ n, only evaluates n :: Int once:

square :: Tick Int → Tick Int
square n = pure (∗) <∗> n <∗> n

Therefore, in this instance, the library’s default cost analysis better approximates the resource usage
of call-by-name evaluation, as opposed to Haskell’s call-by-need evaluation.

Upper, lower, and precise bounds. It should now be clear that an upper bound on the cost of an
annotated program is a true upper bound on actual resource usage, a lower bound is simply a smaller
upper bound, and a precise bound is given by separate upper and lower bounds.

Explicit laziness. Our library can be used to perform more precise analysis on computations that
are explicitly lazy, by analysing (functions on) datatypes that are defined in terms of Tick. We return
to this idea in the case study on insertion sort in section 4.

3 IMPLEMENTATION
In this section, we discuss the implementation of our library and a number of assumptions it makes.
The library consists of two modules. The first, RTick, includes the Tick datatype and numerous
helper functions for recording and modifying resource usage, for example, pure and (</ >) from sec-
tion 2. The second module, ProofCombinators, defines combinators to encode steps of (in)equational
reasoning about the values and resource usage of annotated expressions.

3.1 Recording resource usage
Our principle datatype, Tick a, consists of an integer to track resource usage and a value of type a:

data Tick a = Tick { tcost :: Int, tval :: a }

It should be clear that the value of an annotated expression is not necessarily in normal form, for
example, the value of pure (1 + 1) :: Tick Int is 1 + 1, which is not in normal form.

The Tick datatype is a monad, with the following applicative and monad functions:

{−@ pure :: x : a→ { t : Tick a | tval t == x && tcost t == 0 } @−}
pure x = Tick 0 x
{−@ (<∗>) :: t1 : Tick (a→ b) → t2 : Tick a
→ { t : Tick b | tval t == (tval t1) (tval t2) && tcost t == tcost t1 + tcost t2 } @−}

Tick m f <∗> Tick n x = Tick (m + n) (f x)

, Vol. 1, No. 1, Article . Publication date: March 2019.

Liquidate your assets 7

{−@ return :: x : a→ { t : Tick a | tval t == x && tcost t == 0 } @−}
return x = Tick 0 x
{−@ (>>=) :: t1 : Tick a→ f : (a→ Tick b)
→ { t : Tick b | tval t == tval (f (tval t1)) && tcost t == tcost t1 + tcost (f (tval t1)) } @−}

Tick m x >>= f = let Tick n y = f x in Tick (m + n) y

The functions pure and return embed expressions in the Tick datatype and record zero cost, while
the (<∗>) and (>>=) operators sum up the costs of subexpressions.

We have formalised the applicative and monad laws for the above definitions in Liquid Haskell.
The relevant proofs can be found on the library’s GitHub page [Handley and Vazou 2019].

3.2 Modifying resource usage
The RTick module provides a wide range of helper functions that can be used to record resource
usage within function definitions. Inspired by the work in [Danielsson 2008], we refer to these (and
the applicative and monad functions above) as annotations. The helper functions used throughout the
article are introduced below, and the remainder can be found online [Handley and Vazou 2019].

The most basic way to record resource usage is by using step:

{−@ step ::m : Int → t1 : Tick a→ { t : Tick a | tval t == tval t1 && tcost t == m + tcost t1 } @−}
step m (Tick n x) = Tick (m + n) x

A positive integer argument to step indicates the consumption of a resource and negative production.
In many cases, we wish to sum up the costs of subexpressions and then modify the result. For this

we provide a number of resource combinators. One such combinator, (</ >), was used in section 2
and is a variation of the apply operator, (<∗>). Specifically, (</ >) behaves just as (<∗>) at the
value-level, but increases the total resource usage of its subexpressions by one:

{−@ (</ >) :: t1 : Tick (a→ b) → t2 : Tick a
→ { t : Tick b | tval t == (tval t1) (tval t2) && tcost t == 1 + tcost t1 + tcost t2 } @−}

Tick m f </ > Tick n x = Tick (1 +m + n) (f x)

A similar combinator is defined in relation to the bind operator:

{−@ (>/=) :: t1 : Tick a→ f : (a→ Tick b)
→ { t : Tick b | tval t == tval (f (tval t1)) && tcost t == 1 + tcost t1 + tcost (f (tval t1)) } @−}

x >/= f = let Tick n y = f x in Tick (1 +m + n) y

Finally, we provide functions to embed computations in the Tick datatype whilst simultaneously
consuming or producing resources. For example, wait and waitN [Danielsson 2008] act in the same
manner as return at the value-level, but consume one and n > 0 resources, respectively:

{−@ wait :: x : a→ { t : Tick a | tval t == x && tcost t == 1 } @−}
wait x = Tick 1 x
{−@ waitN :: {n : Int | n > 0 } → x : a→ { t : Tick a | tval t == x && tcost t == n } @−}
waitN n x = Tick n x

From the definitions of (>/=), step, and (>>=) it should be clear that the following equality holds:
(t >/= f) == step 1 (t >>= f). In fact, all of the helper functions provided by the RTick module,
including (<∗>) and (</ >), can be defined using return, (>>=), and step. We make use of this fact
in section 5 when proving the soundness of the library’s cost analysis.

It is important to note that Tick’s integer argument should not be modified by any means other
than through the use of the helper functions in the RTick module, for example, by case analysis. The
reasons for this are discussed at the end of this section as part of the library’s assumptions.

, Vol. 1, No. 1, Article . Publication date: March 2019.

8 Martin A.T. Handley, Niki Vazou, and Graham Hutton

Equal {−@ (==.) :: x : a→ {y : a | y == x } → {v : a | v == x && v == y } @−}
==. y = y

Greater than {−@ (>=.) ::m : a→ {n : a | m >= n } → {o : a | m >= o && o == n } @−}
or equal >=. n = n

Theorem (?) :: a→ Proof → a
invocation x ? = x

Proof (∗∗∗) :: a→ QED → Proof
finalisation ∗∗∗ QED = ()

QED Definition data QED = QED

Eq a type class instances are assumed for (==.) and Num a for (>=.)

Figure 1. Proof combinators introduced in [Vazou et al. 2018].

3.3 Manual proofs about resource usage
As exemplified in section 2, extrinsic cost analysis requires manually proving that bounds on resource
usage hold using deep reasoning [Vazou et al. 2018]. In essence, deep reasoning is Liquid Haskell’s
formalisation of (in)equational reasoning about programs. To this end, a proof of an extrinsic theorem
is a total and terminating Haskell function that appropriately relates the left-hand side of the theorem’s
proof statement to the right-hand side, for example, by unfolding and folding definitions [Burstall
and Darlington 1977], and through the use of mathematical induction.

Next, we introduce a number of proof combinators from our ProofCombinators module that aid
the development of extrinsic proofs. As a running example we show that append’s right identity law,
xs ++ [] == xs, is an optimisation in the left-to-right direction, by proving properties about the
annotated append function, (++), from section 2.

3.3.1 Recap: proof construction. We first give an overview of how to construct (in)equational
proofs using Liquid Haskell. To exemplify both styles of proof (equational and inequational), we
reason about the results and resource usage of append separately. Readers may refer to [Vazou et al.
2018] for a detailed discussion on the following concepts.

Specifying theorems. The Proof type is simply the unit type, which is refined to express a theorem:

type Proof = ()

For example, in order to show that append’s right identity law is a denotational equivalence we can
express that the values of xs ++ [] and pure xs are equal:

{−@ rightIdVal :: xs : [a]→ {p : Proof | tval (xs ++ []) == tval (pure xs) } @−}

Here, the binder p : Proof is irrelevant and so we can remove it:

{−@ rightIdVal :: xs : [a]→ { tval (xs ++ []) == tval (pure xs) } @−}

Equational proofs. The above theorem expresses a value equivalence between two annotated
expressions. In this case, Liquid Haskell cannot prove the theorem on our behalf. In order to prove it
ourselves we can define one of its inhabitants using a number of proof combinators from figure 1:

, Vol. 1, No. 1, Article . Publication date: March 2019.

Liquidate your assets 9

rightIdVal :: [a]→ Proof
rightIdVal []
= tval ([] ++ [])
==. tval (pure [])
∗∗∗ QED

rightIdVal (x : xs)
= tval ((x : xs) ++ [])
==. tval (pure (x:) </ > (xs ++ []))

? rightIdVal xs
==. tval (pure (x:) </ > pure xs)
==. tval (Tick 0 (x:) </ > Tick 0 xs)
==. tval (Tick 1 (x : xs))
==. tval (Tick 0 (x : xs))
==. tval (pure (x : xs))
∗∗∗ QED

Recall that the aim of the proof is to equate the left-hand side of the theorem’s proof statement,
tval (xs ++ []), with the right-hand side, tval (pure xs). We split it into two cases. In the base
case, where xs is empty, the proof simply unfolds the definition of (++). In the inductive case, where
xs is non-empty, the proof unfolds (++) and (</ >), and unfolds and folds pure. It also appeals to
the inductive hypothesis using (?). In both cases, the (==.) combinator relates steps of reasoning by
ensuring that both of its arguments are equal, and returns its second argument to allow multiple uses
to be chained together. The (∗∗∗ QED) function signifies the end of each proof.

Inequational proofs. Having proved that the values of xs ++ [] and pure xs are equal, the next
step is to compare their resource usage. From section 2, we know that the costs of both expressions
are not equal. In particular, xs ++ [] requires length xs more recursive calls to append than pure xs.
We can formalise this by proving that the execution cost of xs ++ [] is greater than or equal to that
of pure xs using the (>=.) combinator presented in figure 1:

{−@ rightIdCost :: xs : [a]→ { tcost (xs ++ []) >= tcost (pure xs) } @−}
rightIdCost :: [a]→ Proof
rightIdCost xs
= tcost (xs ++ [])
>=. tcost (pure [])
∗∗∗ QED

The resource usage of pure xs is zero as it requires no recursive calls to (++). Furthermore, Liquid
Haskell can automatically deduce that tcost (xs ++ []) == length xs and that length xs >= 0.
Hence the theorem follows from a single use of (>=.).

The ProofCombinators module includes numerous other numerical operators for reasoning about
execution cost, including greater than (>.), less than (<.), and less than or equal (<=.).

3.3.2 Proofs of cost equivalence, improvement, and diminishment.

Cost equivalence. Often it is beneficial to reason about the values and resource usage of annotated
expressions simultaneously. For example, if we unfold the base case of the annotated append function,
(++), it is easy to show that both expressions are equal:

[] ++ ys == pure ys

Nonetheless, instead of relating the two expressions using equality, we prefer to use the notion of cost
equivalence, which better clarifies our topic of reasoning. The cost equivalence relation is defined as
a Liquid Haskell predicate in figure 2, and states that two annotated expressions are “cost-equivalent”
if they have the same values and resource usage. Clearly [] ++ ys and pure ys do:

[] ++ ys <=> pure ys

, Vol. 1, No. 1, Article . Publication date: March 2019.

10 Martin A.T. Handley, Niki Vazou, and Graham Hutton

Relations

Value equivalence t1 =!= t2 = tval t1 == tval t2
Cost equivalence t1 <=> t2 = t1 =!= t2 && tcost t1 == tcost t2

Cost improvement t1 >∼> t2 = t1 =!= t2 && tcost t1 >= tcost t2
Cost diminishment t1 <∼< t2 = t1 =!= t2 && tcost t1 <= tcost t2

Quantified improvement t1 >== n ==> t2 = t1 =!= t2 && tcost t1 == n + tcost t2
Quantified diminishment t1 <== n ==< t2 = t1 =!= t2 && n + tcost t1 == tcost t2

Eq a type class instances are assumed for (=!=)

Combinators

Cost equivalence {−@ (<=>.) :: t1 : Tick a→ {t2 : Tick a | t1 <=> t2 }
→ { t : Tick a | t1 <=> t && t2 <=> t } @−}

Cost improvement {−@ (>∼>.) :: t1 : Tick a→ {t2 : Tick a | t1 >∼> t2 }
→ { t : Tick a | t1 >∼> t && t2 <=> t } @−}

Cost diminishment {−@ (<∼<.) :: t1 : Tick a→ {t2 : Tick a | t1 <∼< t2 }
→ { t : Tick a | t1 <∼< t && t2 <=> t } @−}

Quantified improvement {−@ (.>==) :: t1 : Tick a→ n : Nat → {t2 : Tick a | t1 >== n ==> t2 }
→ { t : Tick a | t1 >== n ==> t && t2 <=> t } @−}

Quantified diminishment {−@ (.<==) :: t1 : Tick a→ n : Nat → {t2 : Tick a | t1 <== n ==< t2 }
→ { t : Tick a | t1 <== n ==< t && t2 <=> t } @−}

Combinators simply return their last arguments similarly to (==.) in figure 1

Separators

Quantified improvement (==>.) :: (a→ b) → a→ b f ==>. x = f x
Quantified diminishment (==<.) :: (a→ b) → a→ b f ==<. x = f x

Figure 2. Cost relations, combinators, and separators.

The above property is a “resource-aware” version of append’s left identity law, which formalises
that both expressions, [] ++ ys and ys, evaluate to the same result and require the same number of
recursive calls to append during evaluation (as shown in example 5 of section 2).

Cost improvement. Previously, we proved that append’s right identity law is a value equivalence:
tval (xs ++ []) == tval (pure xs), and a cost inequivalence: tcost (xs ++ []) >= tcost (pure xs).
Both of these properties are captured by the cost improvement relation defined in figure 2. Append’s
right identity law is thus an improvement—with respect to number of recursive calls—in the left-to-
right direction. Following [Moran and Sands 1999], we say “xs ++ [] is improved by pure xs”.

One way to prove that append’s right identity law is a left-to-right improvement is to simply
combine both sets of refinements from rightIdVal and rightIdCost using (?):
{−@ rightIdImp :: xs : [a]→ {xs ++ [] >∼> pure xs } @−}
rightIdImp :: [a]→ Proof
rightIdImp xs = rightIdVal xs ? rightIdCost xs

However, in general, this approach overlooks a key opportunity afforded by relational cost analysis,
which is the ability to precisely relate intermediate execution steps [Çiçek 2018].

Crucially, unfolding (and folding) the definitions of annotated expressions makes resource usage
explicit in steps of (in)equational reasoning. Not only does this allow savings in resource usage to be
quantified in proofs, but it allows such savings to be localised. This approach fundamentally requires
reasoning about the values and execution costs of annotated expressions simultaneously, and thus
proofs relating values and costs independently simply cannot exploit it.

, Vol. 1, No. 1, Article . Publication date: March 2019.

Liquidate your assets 11

Quantified improvement. It is straightforward to show that xs ++ [] is improved by pure xs by
relating the expressions’ intermediate execution steps using cost combinators from figure 2. However,
we know the exact cost difference between xs ++ [] and pure xs, namely length xs. This extra
information allows us to relate the expressions more precisely using the quantified improvement
relation, also defined in figure 2. Quantified improvement intuitively extends cost improvement by
taking an additional argument, which is the cost difference between its first and last arguments.

Therefore, we can say “xs ++ [] is improved by pure xs, by a cost of length xs”, and make it
precise by defining a corresponding theorem, as follows:

{−@ rightIdQImp :: xs [a]→ {xs ++ [] >== length xs ==> pure xs } @−}

To prove this theorem, we can simply extend the previous proof of correctness (value equivalence),
rightIdVal, by replacing equality with cost equivalence and by making cost savings wherever possible.
Readers are encouraged to note the strong connection between rightIdVal and the following proof.

rightIdQImp :: [a]→ Proof
rightIdQImp []
= [] ++ []
<=>. pure []
∗∗∗ QED

rightIdQImp (x : xs)
= (x : xs) ++ []
<=>. pure (x:) </ > (xs ++ [])

? rightIdQImp xs
.>== length xs ==>. pure (x:) </ > pure xs
<=>. Tick 0 (x:) </ > Tick 0 xs
<=>. Tick 1 (x : xs)
.>== 1 ==>. Tick 0 (x : xs)
<=>. pure (x : xs)
∗∗∗ QED

In the base case, where xs is empty, there is no cost saving. This is because length [] == 0 and,
therefore, tcost ([] ++ []) == tcost (pure []). Hence it suffices to show that [] ++ [] <=>
pure [], which follows immediately from the definition of (++).

In the inductive case, where xs is non-empty, we need to show a cost saving of length (x : xs). We
start by unfolding the definition of (++), and then replace xs ++ [] with pure xs by referring to the
inductive hypothesis using (?), which saves length xs resources. This saving is made explicit using
the quantified improvement operator, (.>== length xs ==>.), which is a combination of two functions,
(.>==) and (==>.), whereby the latter is a syntactic sugar for Haskell’s application operator ($) that
allows (.>==) to be used infix. We save one further recursive call by unfolding the definition of
(</ >). Finally, our goal follows from the definition of pure. The total resource saving is 1+ length xs,
which is equal to length (x : xs) by the definition of length.

By starting at the left-hand side of a resource-aware version of append’s right identity law, we have
used simple steps of inequational reasoning to derive the right-hand side. Each step of reasoning
ensures denotational meaning is preserved while simultaneously maintaining or improving resource
usage. Resource usage is made explicit in steps of reasoning by cost annotations. Furthermore,
the location and quantity of each resource saving is made explicit through the use of quantified
improvement. We remind readers that Liquid Haskell verifies the correctness of every proof step.

In this particular instance, quantified improvement shows that one recursive call is saved per
inductive step of the proof, and hence append’s right identity law is a left-to-right optimisation—with
respect to number of recursive calls—precisely because xs ++ [] evaluates to xs.

Although improvement and quantified improvement are notionally equivalent, the fact that the
latter relation makes resource savings explicit in both theorems and proofs is a significant practical
advantage. This is exemplified in section 4.3, where the derivation of an optimised-by-construction
list reverse function relies on essential use of quantified improvement.Cost diminishment and quantified diminishment. The combinators introduced up until now can
only be used to prove that one expression e1 :: Tick a is improved by another e2 :: Tick a by starting at

, Vol. 1, No. 1, Article . Publication date: March 2019.

12 Martin A.T. Handley, Niki Vazou, and Graham Hutton

e1 and deriving e2. This is because (quantified) cost improvement enforces a positive cost difference
in the left-to-right direction. However, in some cases it may be easier to derive e1 from e2. To support
this, we use the notion of (quantified) cost diminishment, also presented in figure 2, which is dual to
(quantified) cost improvement. For example, it is straightforward to prove that pure xs is diminished
by xs ++ [], by a cost of length xs. To achieve this, simply reverse the calculation steps of
rightIdQImp: replacing instances of quantified improvement with quantified diminishment.

It should be clear that e1 >∼> e2 if and only if e2 <∼< e1, and likewise that e1 >== n ==> e2 if
and only if e2 <== n ==< e1. Similar relationships exist between other cost relations, for example, if
e1 >∼> e2 and e2 >∼> e1, then e1 <=> e2. All such relationships have been formalised using Liquid
Haskell and the relevant proofs are available online [Handley and Vazou 2019].

3.4 Library assumptions
To help users ensure their cost analysis is sound, the library makes two key assumptions: (1) any
expression whose resource usage is being analysed is not defined using tval or tcost, and furthermore,
it does not perform case analysis on the Tick data constructor; (2) Liquid Haskell’s totality and
termination checkers are active at all times. These assumptions are discussed further below.

3.4.1 Projections and case analysis. Expressions whose resource usage are being analysed
must not be defined using the tval projection function. This is because projecting out the value of an
annotated expression allows its resource usage to be arbitrarily modified. For example, tval can be
used to (indirectly) show that two lists can be appended using (++) without incurring any cost:

{−@ freeAppend :: xs : [a]→ ys : [a]→ { t : Tick [a] | tval t == tval (xs ++ ys) && tcost t == 0 } @−}
freeAppend :: [a]→ [a]→ Tick [a]
freeAppend xs ys = pure (tval (xs ++ ys))

However, we know from the type specification of (++) that tcost (xs ++ ys) == length xs.
Although the above proof is valid: pure (tval (xs ++ ys)) evaluates to a result t :: Tick [a]

such that tval t == tval (xs ++ ys) and tcost t == 0, the use of tval in this instance breaks the
encapsulation of the Tick datatype’s accumulated cost in order to discard it.

Performing case analysis on Tick’s data constructor allows its value to be projected out in much
the same way. Moreover, tcost can simply overwrite any recorded cost.

Consequently, it is clear that these techniques are not in the spirit of genuine cost analysis, and
hence are not permitted by the library. Instead, users should always record resource usage implicitly
by using the helper functions defined in the RTick module.

Remark. Despite this assumption, the tval and tcost projection functions and the Tick data con-
structor are exported from the RTick module. This is because (as we’ve seen previously) tval and
tcost are required to express theorems about correctness and resource usage in refinement types. In
addition, steps of inequational reasoning in extrinsic proofs often refer to the Tick data constructor,
for example, when unfolding the definitions of annotations such as (<∗>) and (>>=).

3.4.2 Totality and termination. Partial definitions, which Haskell permits, are not valid inhabitants
of theorems expressed in refinement types [Vazou et al. 2018]. As such, the resource usage of partial
definitions should not be analysed using the library. Similarly, partial definitions should not be used
to prove theorems regarding the resource usage of other (total) annotated expressions.

Haskell can also be used to specify non-terminating computations. Divergence in refinement typing
(in combination with lazy evaluation) can, however, be used to prove false predicates [Vazou et al.
2014]. Hence, the library’s cost analysis is only sound for computations that require finite resources.

, Vol. 1, No. 1, Article . Publication date: March 2019.

Liquidate your assets 13

Liquid Haskell provides powerful totality and termination checkers that are active by default.
Partial and/or divergent definitions will thus be rejected so long as these systems are not deactivated.
The library, therefore, assumes that they remain active at all times.

4 EVALUATION
In this section, we present an evaluation of our library. The evaluation encompasses three case studies:
cost analysis of monolithic (section 4.1) and non-strict (section 4.2) implementations of insertion sort,
and a derivation of an optimised-by-construction list reverse function (section 4.3). It then concludes
with a summary of all of the examples we have studied while developing the library, the majority of
which have been adapted from the existing literature (section 4.4).

4.1 Insertion sort
This case study analyses the number of comparisons required by the insertion sort algorithm. First,
intrinsic cost analysis is used to prove a quadratic upper bound on the number of comparisons needed
to sort a list of any configuration. We then use extrinsic cost analysis to prove a linear upper bound
on the number of comparisons needed to sort a list that is already sorted.

To begin, we lift the standard insertion sort function into the Tick datatype:

insert :: Ord a⇒ a→ [a]→ Tick [a]
insert x [] = pure [x]
insert x (y : ys)
| x <= y = wait (x : y : ys)
| otherwise = pure (y:) </ > insert x ys

isort :: Ord a⇒ [a]→ Tick [a]
isort [] = return []
isort (x : xs) = insert x =<< isort xs

According to definition of isort, an empty list is already sorted: the result is simply embedded in the
Tick datatype. To sort a non-empty list, its head is inserted into its recursively sorted tail. In this case,
the flipped bind operator, (=<<), sums up the costs of the insertion and the recursive sort.

Inserting an element into a sorted list is standard, with each comparison being recorded using the
functions wait and (</ >) introduced previously in section 3.

4.1.1 Intrinsic cost analysis. Refinement types can now be used to simultaneously specify
properties about the correctness and resource usage of the above functions. In particular, abstract
refinement types [Vazou et al. 2013] can be used to define sorted Haskell lists. That is, a list whereby
the head of each sublist is less than or equal to any element in the tail:

{−@ type OList a = [a]<{λx y → x <= y }> @−}

The OList type constructor is used in the specification of insert to ensure that its input xs is sorted:

{−@ insert :: Ord a⇒ x : a→ xs : OList a
→ { t : Tick {zs : OList a | length zs == 1 + length xs } | tcost t <= length xs } @−}

The result type of insert asserts that the function’s output list zs is sorted and contains one more
element than xs, and that an insertion requires at most length xs comparisons.

The specification for isort states that it returns a sorted list of the same length as its input, xs, and
furthermore, that sorting xs requires at most (lenдth xs)2 comparisons:

{−@ isort :: Ord a⇒ xs : [a]
→{ t : Tick { zs : OList a | length zs == length xs } | tcost t <= length xs ∗ length xs }@−}

Liquid Haskell automatically verifies insert’s specification. On the other hand, isort’s specification
is rejected. This is because the resource usage of insert x =<< isort xs can only be calculated by
performing type-level computations that are not automated by the system. At this point, we could
switch to extrinsic cost analysis and perform the necessary calculations manually. However, we can

, Vol. 1, No. 1, Article . Publication date: March 2019.

14 Martin A.T. Handley, Niki Vazou, and Graham Hutton

also take a different approach that allows us to continue on with our intrinsic analysis. The key to
this approach is utilising the following function, which is a variant of (=<<):

{−@ (=<<{·}) :: n : Nat → f : (a→ { tf : Tick b | tcost tf <= n }) → t : Tick a
→ { t : Tick b | tcost t <= tcost t + n } @−}

(=<<{·}) :: Int → (a→ Tick b) → Tick a→ Tick b
f =<<{n} t = f =<< t

It is clear that f =<<{n} t is operationally equal to f =<< t. However, the refinement type of this
“bounded” version of (=<<) restricts its domain to functions f :: a→ Tick b with execution costs no
greater than n. Hence, the resource usage of f =<<{n} t cannot exceed the resource usage of t plus n.

Using (=<<{·}) in the definition of isort allows Liquid Haskell to check the function’s execution
cost without performing type-level computations. Thus, isort’s specification is automatically verified
for the following definition in which length xs is an upper bound on the cost of each insertion:

isort :: Ord a⇒ [a]→ Tick [a]
isort [] = return []
isort (x : xs) = insert x =<<{lenдth xs} isort xs

4.1.2 Extrinsic cost analysis. Next, we prove that the maximum number of comparisons made by
isort is linear when its input is already sorted. We capture this property with the following extrinsic
theorem that takes a sorted list as input. Therefore, isort does not need to be redefined.

{−@ isortCostSorted :: Ord a⇒ xs : OList a→ { tcost (isort xs) <= length xs } @−}

To prove this theorem, we must consider three cases: when the input list is empty; when the input
list is a singleton, which invokes the base case of insert; and when the input list has more than one
element, which invokes the recursive case of insert. The first two cases follow immediately from the
definitions of isort and insert, and thus can be automated by Liquid Haskell’s PLE feature:

{−@ ple isortCostSorted @−}
isortCostSorted :: Ord a⇒ [a]→ Proof
isortCostSorted [] = ()

isortCostSorted [x] = ()

When the input list contains more than one element, the proof begins by unfolding the definitions of
isort and (=<<{·}), and then continues by appealing to the inductive hypothesis:

isortCostSorted (x : (xs@(y : ys)))
= tcost (isort (x : xs))
==. tcost (insert x =<<{lenдth xs} isort xs)
==. tcost (isort xs) + tcost (insert x (tval (isort xs)))

? isortCostSorted xs
<=. length xs + tcost (insert x (tval (isort xs)))

At this point, we invoke a lemma that proves tval (isort xs) is an identity on xs when the list is sorted,
which we know it is. (isortSortedVal’s proof is available online [Handley and Vazou 2019].)

? isortSortedVal xs
==. length xs + tcost (insert x xs)
==. length xs + tcost (insert x (y : ys))

As the input list (x : y : ys) is sorted, we know that x <= y. Consequently, insert x (y : ys) will not
recurse and unfolding the definitions of insert and wait completes the proof:

==. length xs + tcost (wait (x : y : ys))
==. length xs + 1

, Vol. 1, No. 1, Article . Publication date: March 2019.

Liquidate your assets 15

==. length (x : xs)
∗∗∗ QED

Overall, this case study exemplifies how our library can be used to establish precise bounds on the
resource usage of functions operating on subsets of their domains. In this instance, we imposed a
“sortedness” constraint on the input xs to isort using an extrinsic theorem, without needing to modify
the function’s definition. Furthermore, the above proof relies on the fact that isort’s result is a sorted
list in order to show that tval (isort xs) is an identity on xs. Hence, once more, we have demonstrated
how correctness properties can be utilised for the purposes of precise cost analysis.

4.1.3 Resource propagation. The execution cost of any annotated function that uses isort will
(in general) be at least quadratic. For example, a minimum function defined by taking the head of a
non-empty list that is sorted using isort also has a quadratic upper bound:

{−@ minimum :: Ord a⇒ xs : { [a] | length xs > 0 } → { t : Tick a | tcost t <= length xs ∗ length xs } @−}
minimum :: Ord a⇒ [a]→ Tick a
minimum xs = pure head <∗> isort xs

This is because (as discussed in section 2.3) isort is treated as a monolithic function given that it
operates on standard Haskell lists. The cost of pure head <∗> isort xs, therefore, includes the cost of
fully applying isort xs. In practice, however, insertion sort does not need to be fully applied in order
to obtain the least element in the input list. In particular, Haskell’s lazy evaluation strategy will the
halt the sorting computation as soon the head of the result is generated. Next we see how the Tick
datatype can be used to explicitly encode this kind of non-strict behaviour.

4.2 Non-strict insertion sort
Our cost analysis treats functions that operate on standard Haskell datatypes as monolithic. To encode
non-strict evaluation, we include Tick in the definitions of datatypes in order to suspend computations.
Datatype defined using Tick are called lazy and functions that operate on them non-strict.

In this case study, which is adapted from [Danielsson 2008], we define a non-strict minimum
function to calculate the least element in a non-empty lazy list that has been sorted using insertion
sort. The execution cost of the new minimum function has a linear upper bound, which better reflects
the resources required by Haskell’s on-demand evaluation.

4.2.1 Refined lazy lists. Following [Danielsson 2008], we define lazy lists to be either empty
(Nil) or constructed (Cons) from a pair of a lhead ::a and a ltail ::Tick (LList a), which is an annotated
computation that returns a lazy list. Furthermore, to encode recursive properties into lazy lists, such
as “sortedness”, we use an abstract refinement p to capture invariants that hold between the head of a
lazy list and each element of its tail, and moreover, that recursively hold inside its tail:

{−@ data LList a<p :: a→ a→ Bool> = Nil
| Cons { lhead :: a, ltail :: Tick (LList<p> (a<p lhead>)) } @−}

data LList a = Nil | Cons { lhead :: a, ltail :: Tick (LList a) }

Sorted lazy lists can be defined similarly to OList a, by instantiating the abstract refinement to
express that the head of each sublist is less than or equal to any element in the tail:

{−@ type OLList a = LList<{λx y → x <= y }> a @−}

4.2.2 Non-strict sorting. We can now define a non-strict version of the insertion function using
lazy lists. The key distinction between insert and linsert is that in the definition below, the recursive
call to linsert is suspended (as an annotated computation) and stored in the tail of the resulting list.

{−@ linsert :: Ord a⇒ a→ xs : OLList a
→ { t : Tick {zs : OLList a | llength zs == length xs + 1 } | tcost t <= 1 } @−}

, Vol. 1, No. 1, Article . Publication date: March 2019.

16 Martin A.T. Handley, Niki Vazou, and Graham Hutton

linsert :: Ord a⇒ a→ LList a→ Tick (LList a)
linsert x Nil = return (Cons x (return Nil))
linsert x (Cons y ys)
| x <= y = wait (Cons x (return (Cons y ys)))
| otherwise = wait (Cons y (ys >>= linsert x))

When analysing functions that operate on ordinary Haskell datatypes, we have seen that execution
cost corresponds to such functions being fully applied. Now we see that the execution cost of non-
strict functions corresponds to such functions returning the first parts of their results. In this instance,
linsert returns the first element in its resulting lazy list by making one comparison when its input is
non-empty and zero comparisons otherwise: tcost t <= 1.

Non-strict insertion sort, lisort, is analogous to isort, however its result is a sorted lazy list:

{−@ lisort :: Ord a⇒ xs : [a]
→ { t : Tick {zs : OLList a | llength zs == length xs } | tcost t <= length xs } @−}

lisort :: Ord a⇒ [a]→ Tick (LList a)
lisort [] = return Nil
lisort (x : xs) = linsert x =<<{1} lisort xs

Given an ordinary Haskell list as input, lisort returns a sorted lazy list. Hence, it is a non-strict
function and its execution cost reflects the maximum number of comparisons required to produce
the first element in its result. Notice that this execution cost has been intrinsically verified because
(=<<{·}) (accurately) approximates the execution cost of linsert at each recursive call.

4.2.3 Non-strict minimum. A non-strict minimum function, lminimum, can now return the first
element in a non-empty list xs that has been partially sorted using lisort. As lminimum only forces
the first element of lisort xs to be calculated, it requires at most length xs comparisons:

{−@ lminimum :: Ord a⇒ {xs : [a] | length xs > 0 } → { t : Tick a | tcost t <= length xs } @−}
lminimum :: Ord a⇒ [a]→ Tick a
lminimum xs = pure lhead <∗> lisort xs

4.2.4 Explicit laziness. Lazy lists (of type LList a) are defined so that examining the head is
zero-cost, but examining the last element has a cost equal to the sum total of the costs of each
suspended computation in the tail. As discussed in section 2.3, if such a list is fully evaluated on
multiple occasions during a computation, the default analysis records the cost of each evaluation
independently. However, in practice, once a list is fully evaluated by Haskell’s operational semantics,
its value is memoised and thus subsequent uses are “free”.

To explicitly capture memoisation in our analysis, we use pay from [Danielsson 2008]:

{−@ pay ::m : Nat → {t1 : Tick a | tcost t1 >= m }
→ {t2 : Tick (Tick a) | tcost (tval t2) == tcost t1 −m } @−}

pay :: Int → Tick a→ Tick (Tick a)
pay m (Tick n x) = Tick m (Tick (n −m) x)

Evaluating pay m t >>= f allows f to use t’s value numerous times while only paying m cost for it
once. Therefore, if m == tcost t then this effectively models memoisation.

We repeated Danielsson’s analysis [Danielsson 2008] of Okasaki’s queues as part of the library’s
evaluation (section 4.4). In this example, non-strictness is captured by defining a lazy queue datatype
and sharing is modelled explicitly by defining lazy functions that are non-strict and use pay.

, Vol. 1, No. 1, Article . Publication date: March 2019.

Liquidate your assets 17

4.3 Optimised-by-construction reverse
In Theorem Proving for All, Vazou et al. [2018] systematically derive a linear-time list reverse
function from a high-level specification concerning the well-known, naive list reverse function, which
has a quadratic runtime performance. The fundamental goal of this calculation is to prove that the
new implementation is correct-by-construction. In order words, that the denotational meaning of the
initial specification is preserved during the calculation.

This case study goes one step further and proves that the derived implementation preserves
the meaning and improves the initial function. To achieve this, we use the notion of quantified
improvement to simultaneously reason about correctness and efficiency. The cost combinators from
section 3.3 capture the resources saved at each calculation step and so the total resource saving and
final resource usage are both calculated on the fly as part of the derivation process.

Readers should note that the definitions in the subsequent sections Executable code, Specification,
and Proof exemplify the corresponding figures given in table 1 of section 4.4.

4.3.1 Executable code. Consider the naive list reverse function, which has been annotated to
count the total number of recursive calls, that is, by itself and (++) (from section 2.1):

reverse :: [a]→ Tick [a]
reverse [] = return []
reverse (x : xs) = reverse xs >/= (++ [x])

The reverse function appends each element of the input list to the end of its reversed tail. As the cost
of (++) is linear in the length of its first argument, the total number of recursive calls made by reverse
is quadratic. The precise cost of reverse is captured by the following extrinsic theorem:

{−@ reverseCost :: xs : [a]
→ { tcost (reverse xs) == ((length xs ∗ length xs) / 2) + ((length xs + 1) / 2) } @−}

4.3.2 Specification. To improve reverse, we seek to fuse together the processes of appending
and reversing. This can be achieved by defining a new function that reverses its first argument and
appends its second. We express this requirement as a Liquid Haskell specification:

{−@ reverseApp :: xs : [a]→ ys : [a]→{ t : Tick [a] | reverse xs >>= (++ ys) >∼> t }@−}

Since we plan to use reverseApp to improve reverse, any implementation we propose for this
function must also record the total number of recursive calls. Furthermore, note that the above
specification is a cost improvement. This means that reverseApp must give the same results as
reverse xs >>= (++ ys) by using no more resources. We start with a trivial definition for reversApp
that satisfies the specification but makes no cost savings:

reverseApp :: [a]→ [a]→ Tick [a]
reverseApp [] ys = reverse [] >>= (++ ys)
reverseApp (x : xs) ys = reverse (x : xs) >>= (++ ys)

4.3.3 Initial resource usage. While deriving a new implementation for reverseApp, we will
calculate the total resource saving, call it s, on the fly using quantified improvement. In order to
calculate the resource usage of the final result, however, we must first calculate the initial resource
usage of reverse xs >>= (++ ys), call it u. The final resource usage is then simply u − s.

The resource usage of reverse xs >>= (++ ys) is as follows:

{−@ reverseApp0Cost :: xs : [a]→ ys : [a]
→{ tcost (reverse xs >>= (++ ys)) == ((length xs ∗ length xs) / 2) + ((3 ∗ length xs + 1) / 2) }@−}

, Vol. 1, No. 1, Article . Publication date: March 2019.

18 Martin A.T. Handley, Niki Vazou, and Graham Hutton

The proof of this theorem follows immediately from the resource usage of reverse and (++), and is
available online along with the proof of reverseCost [Handley and Vazou 2019].

4.3.4 Proof by inequational rewriting. The next step of the improvement process is to rewrite the
right-hand sides of the trivial definition to more efficient forms. To do so, we use proof combinators
introduced in section 3.3 to ensure that each rewrite preserves the result (denotation) of reverseApp
while preserving or improving its execution cost.

The rewriting follows the general insight that a proof of improvement is very similar to its
respective proof of correctness. As such, we initially focus on correctness by unfolding and folding
definitions. Whenever a resource saving can be made, we use quantified improvement to precisely
capture it. Finally, at the end of the calculation, we turn our attention to resource usage.

With this in mind, we begin by rewriting the base case of reverseApp: first by unfolding the
definitions of reverse, (>>=), and (++); then by inlining the let binding and folding return:

reverseApp :: [a]→ [a]→ Tick [a]
reverseApp [] ys
= reverse [] >>= (++ ys)
<=>. Tick 0 [] >>= (++ ys)
<=>. (let Tick n y = [] ++ ys in Tick n y)
<=>. (let Tick n y = Tick 0 ys in Tick n y)
<=>. return ys

For the recursive case, we also begin by unfolding definitions as much as possible:
reverseApp (x : xs) ys
= reverse (x : xs) >>= (++ ys)
<=>. (reverse xs >/= (++ [x])) >>= (++ ys)
<=>. (let Tick o w = reverse xs in Tick o w >/= (++ [x])) >>= (++ ys)
<=>. (let Tick o w = reverse xs in let Tick p v = w ++ [x] in Tick (1 + o + p) v >>= (++ ys))
<=>. (let Tick o w = reverse xs in let Tick p v = w ++ [x] in let Tick q u = v ++ ys in Tick (1 + o + p + q) u)

Notice that in order to unfold the definition of (>/=), we must introduce a let binding because
reverse xs is not in “Tick normal form”. This is a strategy we commonly employ.

At this point, there is an addition of a constant cost (of one) on the returned Tick. Since we are in
the recursive case of the calculation, we do not save on this resource usage under the assumption that
we will recurse on reverseApp. Consequently, we “bank” this recursive call with the step function.

<=>. step 1 (let Tick o w = reverse xs in let Tick p v = w ++ [x] in let Tick q u = v ++ ys in Tick (o + p + q) u)
<=>. step 1 (let Tick o w = reverse xs in let Tick p v = w ++ [x] >>= (++ ys) in Tick (o + p) v)

We then folded the definition of (>>=) to expose the expression w ++ [x] >>= (++ ys), which is
two appends associated to the left. In order to continue with the calculation, these appends must be
re-associated to the right. From example 5 of section 2, we know that this is an improvement:

{−@ appendAssocQImp :: xs : [a]→ ys : [a]→ zs : [a]
→{xs ++ ys >>= (++ zs) >== length xs ==> (xs ++) =<< ys ++ zs }@−}

Appealing to appendAssocQImp with xs := tval (reverse xs), ys := [x], and zs := ys saves length xs
resources. (Note that the specification of reverse proves that length (tval (reverse xs)) == length xs).
We use quantified improvement to capture the cost saving: (.>== length xs ==>.).

? appendAssocQImp (tval (reverse xs)) [x] ys
.>== length xs ==>. step 1 (let Tick o w = reverse xs in let Tick p v = [x] ++ ys >>= (w ++) in Tick (o + p) v))

We then continue by unfolding the definitions of (++), pure, and (</ >):
<=>. step 1 (let Tick o w = reverse xs in let Tick p v = pure (x:) </ > ([] ++ ys) >>= (w ++) in Tick (o + p) v)

, Vol. 1, No. 1, Article . Publication date: March 2019.

Liquidate your assets 19

<=>. step 1 (let Tick o w = reverse xs in let Tick p v = Tick 1 (x : ys) >>= (w ++) in Tick (o + p) v)

Unfolding the definition of (</ >) has presented us with another opportunity for resource saving. We
take it, and then continue by unfolding (>>=) and inlining the resulting let:

.>== 1 ==>. step 1 (let Tick o w = reverse xs in let Tick p v = Tick 0 (x : ys) >>= (w ++) in Tick (o + p) v))
<=>. step 1 (let Tick o w = reverse xs in let Tick p v = Tick 0 (x : ys) in let Tick q u = w ++ v in Tick (o + p + q) u)
<=>. step 1 (let Tick o w = reverse xs in let Tick q u = (++ (x : ys)) w in Tick (o + q) u)
<=>. step 1 (reverse xs >>= (++ (x : ys)))

The final step of the calculation is to rewrite the definition to be self-contained. Clearly replacing
reverse xs >>= (++ (x : ys)) with reverseApp xs (x : ys) saves resources:

? reverseAppCost0 xs (x : ys)
.>== ((length xs ∗ length xs) ‘div‘ 2) + ((length xs + 1) ‘div‘ 2) ==>. step 1 (reverseApp xs (x : ys))

This resource saving is calculated by subtracting length xs from the resource usage of reverse xs >>=
(++ (x : ys)), which is given by reverseApp0Cost (introduced previously). Note that we subtract
length xs because evaluating reverseApp xs (x : ys) requires length xs recursive calls, whereby each
recursive call is recorded by the step 1 we “banked” earlier.

Having reached the end of the proof, we can now turn our attention to calculating final resource
usage. Below is a table listing: the initial resource usage, u, calculated by reverseApp0Cost; the
total resource saving, s, calculated by summing up the individual savings made explicit in steps of
quantified improvement; and the final resource usage, which is simply u − s.

Initial usage (u) |(x :xs) |2
2 +

3 ∗ |(x :xs) | + 1
2

Total saving (s) |xs | + 1 + |xs |
2

2 +
|xs |+1

2
Final usage (u − s) |(x : xs) |

By way of a simple subtraction, we have calculated that the final resource usage of reverseApp
is linear in the length of its first argument (as we might expect). By adding this resource bound to
reverseApp’s specification, Liquid Haskell verifies that this property holds and the derivation of an
optimised-by-construction implementation for reverseApp is complete:

{−@ reverseApp :: xs : [a]→ ys : [a]
→ { t : (Tick [a]) | reverse xs >>= (++ ys) >∼> t && tcost t == length xs } @−}

In the above derivation process, quantified improvement makes the quantity and locality of each
cost saving explicit. In particular, it shows a linear cost saving per recursive call. This corresponds
precisely to evaluating (++) in order to fuse together the processes of reversing and appending, which
was our primary goal. Furthermore, the proof combinators used simply to return their last arguments.
As such, at compile time (with optimisation turned on) GHC will remove all of the intermediate
calculation steps, leading to the following concise definition of reverseApp:

reverseApp :: [a]→ [a]→ Tick [a]
reverseApp [] ys = return ys
reverseApp (x : xs) ys = step 1 (reverseApp xs (x : ys))

4.3.5 Optimising reverse. Finally, we can use reverseApp to improve the definition of reverse:
{−@ fastReverse :: xs : [a]→ { t : Tick [a] | reverse xs >∼> t && tcost t == length xs } @−}
fastReverse :: [a]→ Tick [a]
fastReverse xs
= reverse xs
<=>. (let Tick o w = reverse xs in let Tick p v = pure w in Tick (o + p) v)

, Vol. 1, No. 1, Article . Publication date: March 2019.

20 Martin A.T. Handley, Niki Vazou, and Graham Hutton

? rightIdQImp (tval (reverse xs))
.<== length xs ==<. (let Tick o w = reverse xs in let Tick p v = w ++ [] in Tick (o + p) v)
<=>. reverse xs >>= (++ [])

? reverseApp0Cost xs []
.>== ((length xs ∗ length xs) ‘div‘ 2) + ((length xs + 1) ‘div‘ 2) ==>. reverseApp xs []

Notice that by applying append’s right identity (rightIdQImp) in the right-to-left direction, the
resource usage of the resulting expression is greater than or equal to that of the initial expression.
This is captured using quantified diminishment. A simple subtraction (as above) reveals that the final
resource usage of fastReverse xs is length xs, which is verified by Liquid Haskell.

Similarly to reverseApp, the intermediate calculation steps of fastReverse will be removed at
compile time when optimisation is turned on, leading to the following concise definition:

fastReverse :: [a]→ Tick [a]
fastReverse xs = reverseApp xs []

The following functions, revApp and fastRev, were the results of the derivation in Theorem Proving
for All [Vazou et al. 2018]. Each can be calculated from reverseApp and fastReverse, respectively, by
simply removing the cost annotations [Handley and Vazou 2019].

revApp :: [a]→ [a]→ [a]
revApp [] ys = ys
revApp (x : xs) ys = revApp xs (x : ys)

fastRev :: [a]→ [a]
fastRev xs = revApp xs []

We have, therefore, arrived at the same end point as [Vazou et al. 2018], however, this time we have
also formalised a reduction in the execution cost of the initial specification.

Summary. The derivation in this case study mirrors the calculation in section 4.1 of [Vazou et al.
2018] step-for-step (we encourage readers to check). Concretely, we have replaced, where necessary,
equational reasoning with inequational reasoning, whereby the resource saving of each rewrite has
been made explicit using the notion of quantified improvement. In short, we have taken a calculation
aimed at deriving a correct-by-construction list reverse function and transformed it into a calculation
aimed at deriving an optimised-by-construction list reverse function.

Furthermore, the reasoning initially focused exclusively on correctness (unfolding and folding
definitions), while total resource savings were calculated on the fly. Only when a final result had
been derived did our attention turn back to resource usage. Then, by a simple subtraction, we were
able to calculate a final resource usage, which Liquid Haskell could verify as a consequence of
our prior reasoning. Thus, we have not only shown how reasoning about resource usage can be as
straightforward as reasoning about correctness. We have shown that the two can in fact coincide.

4.4 Summary of examples
To finalise the library’s evaluation, we provide a summary of all of the examples we have surveyed
during its development. Each example’s source files are available online [Handley and Vazou 2019].

Overview. Table 1 provides a quantitative summary of each example and is split into four categories.
The first three categories include examples from the existing literature, while the last includes the
complexity analysis of different sorting algorithms. An overview of the four categories is as follows:
– Laziness includes functions that manipulate lazy lists and lazy queues from [Danielsson 2008].

For example, in section 4.2 we proved that non-strict insertion sort is linear. We also encoded lazy
queues and proved that viewing a lazy queue and appending at the end are constant. Our examples
are highly comparable to [Danielsson 2008], however, we incorporate additional (automated)
correctness properties, such as sortedness.

, Vol. 1, No. 1, Article . Publication date: March 2019.

Liquidate your assets 21

Table 1. Cost analysis using the RTick library. Exec. reports the lines of executable code, Spec. reports
the lines of specifications, and Proof reports the lines of proof terms.

Lines of code
Property Exec. Spec. Proof

Laziness [Danielsson 2008]
Insertion sort COST(lisort xs) ⩽ | xs | 12 8 0
Implicit queues COST(lsnoc q x) = 5, COST(view q) = 1 50 14 0
Relational [Aguirre et al. 2017; Çiçek et al. 2017; Radiček et al. 2017]
2D count COST(2DCount find1) ⩽ COST(2DCount find2) 16 3 24
Binary counters COST(decr k tt) = COST(incr k ff) 26 21 21
Boolean expressions NOSHORT(e) ⇒ COST(eval1 e) = COST(eval2 e) 28 2 13
Constant-time comparison COST(compare p u_1) = COST(compare p u_2) 3 8 3
Insertion sort SORTED(xs) ⇒ COST(isort xs) ⩽ COST(isort ys) 16 17 44
Memory allocation of length COST(lenдth2 xs) − COST(lenдth1 xs) = length xs 10 4 6
Relational insertion sort COST(isort xs) − COST(isort ys) = unsortedDiff xs ys 16 11 69
Relational merge sort COST(msort xs) − COST(msort ys) ⩽| xs | (1 + log2 (diff xs ys)) 23 25 59
Square and multiply COST(sam t x l1) − COST(sam t x l2) ⩽ t ∗ diff l1 l2 3 8 3
Datatypes [Vazou et al. 2018]
Append’s monoid laws see example 5 of section 2 12 10 74
Appending COST(xs ++ ys) = | xs | 8 3 0
Flattening PERFECT(t) ⇒ COST(flattenOpt t) = 2 |t | − 1 5 18 45
Optimised-by-construction reverse reverse xs >∼> fastReverse xs 18 37 140
Reversing (naive) COST(reverse xs) = |xs |

2

2 +
|xs | + 1

2 9 7 22
Reversing (optimised) COST(fastReverse xs) = | xs | 5 8 0
Sorting
Data.List .sort COST(ssort xs) ⩽ 4 |xs | log2 | xs | + | xs | 39 49 107
Insertion sort COST(isort xs) ⩽ |xs |2 8 10 33
Merge sort |xs |

2 log2 |xs | ⩽ COST(msort xs) ⩽ | xs | log2
|xs |
2 + | xs | 22 69 139

Quicksort COST(qsort xs) ⩽ 1
2 (| xs | + 1) (| xs | + 2) 15 8 27

Total 344 340 829

– Relational includes all the cost analysis examples from [Aguirre et al. 2017; Çiçek et al. 2017;
Radiček et al. 2017]. These examples compare the resource usage of the same function on different
inputs (for example, constant-time comparison from section 2.2) or different functions on the
same input (for example, the memory allocation case study compares the memory required by the
standard and tail recursive implementations of the length function).
From this set of examples, we conclude that even though our system does not have the synchronous
and asynchronous rules of relational logic, extrinsic reasoning allows us to encode sophisticated
relational properties whose proofs are simplified by Liquid Haskell’s automation.

– Datatypes includes properties concerning lists and trees whose Liquid Haskell correctness proofs
initially appeared in [Vazou et al. 2018]. Similarly to the calculation in section 4.3, we have
extended the corresponding correctness proofs to further account for resource usage.

– Sorting includes the cost analysis of well-known sorting algorithms: Data.List’s smooth merge
sort, insertion sort, merge sort, and quicksort. Other than the known upper bounds of the algorithms,
we proved a lower bound for merge sort (section 2.2) and that both insertion sort (section 4.1) and
smooth merge sort require at most linear comparisons when applied to sorted lists.

Overall, we chose these examples because they: required both unary and relational cost analysis;
often imposed constraints on the inputs to functions; were reasonably challenging to encode using
our library; allowed us to draw comparisons against existing systems. Importantly, all of the examples
demonstrate how correctness properties can be naturally integrated into our library’s cost analysis.

Breakdown. Each line in table 1 describes an indicative property we have proved. In some cases,
we have proved additional properties. In other cases, the desired property required proving a stronger

, Vol. 1, No. 1, Article . Publication date: March 2019.

22 Martin A.T. Handley, Niki Vazou, and Graham Hutton

Constants c F 0, 1,−1, . . . | true, false |
+,−, . . . | =, <, . . . | crash

Values v F c | λx .e | D e
Expressions e F v | x | e e | let x = e in e |

case x = e of {D y → e }
Refinements r F e
Basic types B F Int, Bool, T

Types τ F {v : B | r } | x : τx → τ

Contexts C F • | C e | c C | D e C e |
case x = C of {D y → e }

Reduction
C[e] ↪→ C[e ′] if e ↪→ e ′

c v ↪→ δ (c, v)
(λx .e1) e2 ↪→ e2[e1/x]

let x = e_x in e ↪→ e[ex /x]
case x = D j e of {Di yi → ei } ↪→ ej [D j e/x][e/yj]

Figure 3. λU : Syntax and Operational Semantics as in [Vazou et al. 2014].

theorem. Due to space limitations, these additional properties are not included in the table. However,
the source files for all of the examples are available on the library’s GitHub page [Handley and Vazou
2019].

Recall that the case study in section 4.3 illustrates each figure reported in the lines of code column:
– Exec. the total lines of executable code relating to the property;
– Spec. the total lines of code used to express the property as a Liquid Haskell specification;
– Proof the total lines of code used to prove the property.

Synopsis. In total, we wrote 344 lines of executable code; 340 lines of Liquid Haskell specifications
and 829 lines of proof terms. The total lines of code dedicated to specifications and proofs is
approximately three times as much as executable code. Given the complexity of the properties we
have proved, we consider this reasonable. Moreover, the size of many proof terms has been decreased
by using Liquid Haskell’s PLE feature [Vazou et al. 2017].

5 THEORY
In this section, we prove the soundness of our cost analysis using the metatheory of Liquid Haskell.

5.1 Metatheory of Liquid Haskell
Figure 3 summarises the syntax and operational semantics of λU , which is the core language used to
model Liquid Haskell [Vazou et al. 2014]. The language λU includes constants, abstractions, appli-
cations, let and case statements, and datatypes. Its operational semantics is defined as a contextual,
small-step, call-by-name relation ↪→ whose reflective, transitive closure is denoted by ↪→⋆.

Types. The basic types in λU are integers, booleans, and type constructors. Types are either
refinement types of the form {v : B | e } where the basic type B, captured by the variable v, is refined
by the boolean expression e; or dependent function types of the form x : τx → τ where the input x
has the type τx and the result type τ may refer to the binder x.

Denotations. Each type τ denotes a set of expressions, [[τ]], defined by the dynamic semantics
in [Vazou et al. 2014]. Let ⌊τ ⌋ be the type we get if we erase all refinements from τ and e : ⌊τ ⌋ be the
standard typing relation for the typed λ-calculus. Then, we define the denotation of types as follows:

, Vol. 1, No. 1, Article . Publication date: March 2019.

Liquidate your assets 23

[[{x : B | er }]] � { e | e : B, if e ↪→⋆ v then er [v/x] ↪→⋆ true }
[[x : τx → τ]] � { e | e : ⌊x : τx → τ ⌋, ∀ex ∈ [[τx]] . e ex ∈ [[τ [ex/x]]] }

Syntactic typing. The typing judgement Γ ⊢ e :: τ decides syntactically if e is a member of τ ’s
denotation using the environment Γ that maps variables to their types: Γ � x1 : τ1, . . . ,xn : τn .

To analyse resource usage in λU we do not need to modify the typing rules [Vazou et al. 2014].
Instead, we can use λU constants to encode Tick’s annotation functions. This approach corresponds
to our implementation, as we define RTick as a library without changing the underlying behaviour of
Liquid Haskell. To type a λU constant c, we use the meta-function Ty(c) that returns the type of c:

Γ ⊢ c :: Ty(c)
T-CON

To ensure the soundness, Ty(c) should satisfy denotational inclusion c ∈ [[Ty(c)]]. For example:
Ty(3) � {v : Int | v == 3 }
Ty(+) � x : Int → y : Int →{v : Int | v == x + y }

Soundness of λU . The soundness of λU proves that if each constant belongs to the denotation of
its assumed type, then syntactic typing implies denotational inclusion:

THEOREM 5.1 (SOUNDNESS OF λU). If for all c, c ∈ [[Ty(c)]], then ∅ ⊢ e :: τ implies e ∈ [[τ]].

5.2 Soundness of cost analysis
Since λU contains type constructors, data constructors, and constants, but does not support type
polymorphism, we formalise our approach by defining the Tick datatype and a number of its
annotation functions as a type family, where each function is a λU constant. The soundness of our
cost analysis is then simply a corollary of the soundness of λU .

The Tick datatype. For each type τ , we define a datatype Tickτ with a single data constructor:
Tickτ :: Int → τ → Tickτ . Tickτ data constructors should not be used directly. Instead, each Tickτ
datatype should be accessed implicitly using the constants defined below.

Resource annotations. We define the following annotation functions from section 3.2 as λU

constants: returnτ , bindτ1,τ2 , stepτ , tcostτ , tvalτ for each type τ . We use λU to define the types and
(type-specific) bodies of each constant just as in section 3.2. Since Liquid Haskell type-checks the
previous definitions, it must be true that c ∈ [[Ty(c)]] for each constant returnτ , bindτ1,τ2 , and so on.
Therefore, these constants can be used appropriately in λU while preserving soundness.

Safe expressions. Recall from section 3.4 that the library imposes the following restrictions on
annotated expressions in order to correctly analyse their resource usage: firstly, expressions should
not be defined using tval or tcost; secondly, expressions should not perform case analysis on the Tick
data constructor. We formalise these restrictions by defining a safety predicate on λU expressions:

Definition 5.2 (Safety). A λU expression e is safe iff :
– e : τ , that is, e is typeable;
– e’s body is not defined in terms of any tvalτ or tcostτ constants;
– e does not perform case analysis on any Tickτ data constructors.

Execution cost. Consider a safe, terminating function f that returns a value of type Tickτ for some
type τ , that is, f :: x : τx → Tickτ . We define the execution cost of f on an input ex :: τx to be the
index of the returned value. In other words, the execution cost of f ex is i where f ex ↪→

⋆Tickτ i v.
As f does not directly modify any Tickτ datatypes, all resource consumptions or productions via
applications of stepτ in f ’s definition accumulate in the cost i of the final value, Tickτ i v.

, Vol. 1, No. 1, Article . Publication date: March 2019.

24 Martin A.T. Handley, Niki Vazou, and Graham Hutton

Static cost analysis. Finally, we use the soundness of λU to prove that the library’s intrinsic and
extrinsic approaches to analysing resource usage are both sound:

THEOREM 5.3 (SOUNDNESS OF COST ANALYSIS). Let p :: Int → Bool be a predicate over
integers and f :: x : τx → τ a safe and terminating function.

– Intrinsic cost analysis If ∅ ⊢ f :: x : τx → { t : Tickτ | p (tcostτ t) }, then for all ex ∈ [[τx]],
ef ex ↪→

⋆Tickτ i e and p i ↪→⋆ true.
– Extrinsic cost analysis If ∅ ⊢ e :: x : τx → {v : τ | p (tcostτ f x) }, then for all ex ∈ [[τx]],
f ex ↪→

⋆Tickτ i e and p i ↪→⋆ true.

The proof of this theorem follows immediately from the soundness of the core language λU , the
denotations of dependent function types, and the definition of tcostτ .

Other annotations. Theorem 5.3 proves that the library’s cost analysis is sound for annotated
expressions defined using return, (>>=), and step. However, the RTick module provides many more
annotation functions, for example, pure and (<∗>) introduced in section 3.2. It should be clear,
however, that all such functions can be defined using return, (>>=), and step: a proof of this fact
can be found on the library’s GitHub page [Handley and Vazou 2019]. Thus, we implicitly extend
theorem 5.3 to include expressions defined using any of the helper functions provided by the RTick
module.

6 RELATED WORK
Our work has been strongly influenced by Danielsson’s Thunk library [2008], which provides a
lightweight framework for cost analysis in Agda. It is based on the Thunk datatype, which is indexed
with a dependent type used to measure the runtime complexity of purely functional algorithms and
data structures in the style of Okasaki. Our Tick datatype is comparable, but captures abstract resource
usage at the value-level. Much of Thunk’s analysis requires simple equality proofs because Agda
does not automatically prove arithmetic equalities. Our use of Liquid Types avoids such problems as
the underlying arithmetic necessary for our cost analysis can be delegated to an SMT solver. Another
notable distinction is that our library supports both unary and relational cost analysis, whereas the
Thunk library only supports the unary variant.

Indexed types have been widely used for resource analysis. [Crary and Weirich 2000] indexes
the type of functions to compute the number of recursive calls required. Sized types [Hughes et al.
1996; Vasconcelos and Hammond 2003], which index types with natural numbers that denote the
size of their values, have also be used to analyse runtimes. None of these approaches, however, can
express correctness properties, which (as we have seen) allow for more precise and meaningful
analysis. Recent work [McCarthy et al. 2017; Wang et al. 2017] combines indexed types with
functional correctness. [McCarthy et al. 2017] develops a Coq library that uses a monad indexed by
a predicate to measure runtimes. The approach is comparable to [Danielsson 2008], however, the
predicate is used to express invariants of data structures. This allows for more complex case studies
(such as Okasaki’s Braun Trees) to be examined. Another distinction is that cost annotations can be
automatically inserted then erased when code is extracted to OCaml. Implementing this is part of our
future work. Similarly to [Danielsson 2008], relational cost analysis is not supported. TiML [Wang
et al. 2017] indexes the arrow types of functions with their time bounds. A significant feature of
this system is that it provides automated support for solving recurrence relations by heuristically
matching against cases of the Master Theorem. In comparison. we use extrinsic proofs to manually
(but in a complete way) derive complexity theorems. TiML also supports sophisticated invariants,
however, they are only exploited for the purposes of cost analysis. Our library uses invariants (such
as sortedness) to simultaneously reason about program correctness and resource usage.

, Vol. 1, No. 1, Article . Publication date: March 2019.

Liquidate your assets 25

Automatic Amortized Resource Analysis (AARA) [Hofmann and Jost 2003], aims to automatically
derive amortised bounds on resource usage. This is achieved using a type system that generates
resource-specific inequalities to be solved by a linear programming solver. The initial system [2003]
supports linear bounds on monomorphic, first-order programs, but this has since been generalised to
incorporate polynomial bounds [Hoffmann et al. 2011, 2012], higher-order functions [Jost et al. 2010],
parallelism [Hoffmann and Shao 2015], and, most recently, a Haskell-like lazy semantics [Jost et al.
2017]. As AARA focuses on automatically inferring bounds, its analysis may often be less precise
than ours. In particular, our library’s extrinsic resource analysis can (notionally) compute resource
bounds of any type, for example, polynomial, logarithmic, and polylogarithmic. In comparisons,
AARA is (at best) restricted to polynomial bounds and invariants are not supported.

Improvement theory [Moran and Sands 1999] inspired our notions of improvement and quantified
improvement. However, previously Sands introduced improvements [Sands 1995] as a semantic
approach to relational cost analysis, which can be used to prove equivalences between programs.
Similarly, improvements in this context only offer a qualitative guarantee that one program uses no
more resource than another. In this work, we have extended this notion to quantify such guarantees.
In [Moran and Sands 1999], resource usage is measured by counting transitions in an abstract
machine. Interestingly, the linear-time reverse function, fastReverse (from section 4.3), is not an
improvement over the naive function, reverse, in this setting, because the base case of fastReverse
requires more abstract machine transitions than the base case of reverse. By capturing resource usage
at a higher level of abstraction, namely recursive calls, we have proved that the linear-time reverse
function improves its quadratic counterpart in more a practical sense.

RelCost [Çiçek et al. 2017; Çiçek 2018] is a refinement type and effect system for both relational
and unary cost analysis. The main idea is to reason about structurally related expressions as much as
possible to calculate more precise resource bounds via relational cost analysis. When programs or
inputs are not structurally related, the system reverts back to performing unary cost analysis. This is
achieved using two “modes” of typing: one for similar expressions, and one for unrelated expressions.
Liquid Haskell only supports one mode of typing, nevertheless, our library fully supports relational
(and unary) cost analysis by way of extrinsic theorems. The refinements used by Liquid Haskell are
more expressive than those used by RelCost, which allows us to consider more examples.

[Radiček et al. 2017] theorises frameworks for unary and relational cost analysis implemented in
RHOL. The underlying language includes a monad used to encapsulate expressions with cost, much
like our Tick datatype, which shares the same monadic implementation. Similarly to our approach,
the frameworks can express correctness properties that allow for more precise analysis. Our library
is equally as expressive given that the combined results of [Vazou et al. 2017] and [Aguirre et al.
2017] are equally as expressive as HOL. The authors of [Radiček et al. 2017] note that the use
of a cost monad “syntactically separates reasoning about costs from reasoning about functional
properties, thus improving clarity in proofs”. From our experience, reasoning independently about
correctness and resource usage (using the tval or tcost project functions, respectively) can indeed
simplify steps of (in)equational reasoning, especially in the latter case. On the other hand, we have
also demonstrated that reasoning about both simultaneously can be very helpful, for example, when
formally deriving a new and improved implementation from a specification.

7 CONCLUSION AND FURTHER WORK
This article has demonstrated how Liquid Haskell can be used to reason about efficiency, by introduc-
ing a library for analysing the resource usage of pure Haskell programs. Furthermore, by surveying a
range of examples from the existing literature, we have shown how the system’s existing support for
correctness verification can be harnessed to ensure cost analysis is meaningful and precise.

, Vol. 1, No. 1, Article . Publication date: March 2019.

26 Martin A.T. Handley, Niki Vazou, and Graham Hutton

There are three main avenues for further work. Firstly, we would like to develop a GHC plugin
that can be used to automatically annotate standard Haskell code prior to analysis, and furthermore,
remove all cost annotations post analysis. Secondly, we wish to provide support for solving recurrence
relations. For this, we look to the TiML language for guidance. Finally, we plan to incorporate the
cost analysis of monadic Haskell code, for example, the parallelised version of quicksort. We suspect
this requires reimplementing the Tick datatype as a monad transformer.

REFERENCES
Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub. 2017. A Relational Logic for

Higher-order Programs. In ICFP. ACM.
David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl, and Alberto Momigliano. 2007. A Program Logic

for Resources. Theoretical Computer Science (2007).
Robert Atkey. 2010. Amortised Resource Analysis with Separation Logic. In ESOP. Springer.
Rod M Burstall and John Darlington. 1977. A Transformation System for Developing Recursive Programs. JACM (1977).
Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. 2017. Relational Cost Analysis. In POPL.

ACM.
Ezgi Çiçek. 2018. Relational Cost Analysis. Ph.D. Dissertation. Saarland University, Saarbrücken, Germany.
Karl Crary and Stephnie Weirich. 2000. Resource Bound Certification. In POPL. ACM.
Nils Anders Danielsson. 2008. Lightweight Semiformal Time Complexity Analysis for Purely Functional Data Structures. In

POPL.
Martin A. T. Handley and Niki Vazou. 2019. GitHub Repository for Liquidate Your Assets. (2019). https://github.com/

mathandley/RTick.
Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2011. Multivariate Amortized Resource Analysis. In ACM SIGPLAN

Notices. ACM.
Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012. Resource Aware ML. In CAV. Springer.
Jan Hoffmann and Zhong Shao. 2015. Automatic Static Cost Analysis for Parallel Programs. In ESOP. Springer.
Martin Hofmann and Steffen Jost. 2003. Static Prediction of Heap Space Usage for First-order Functional Programs. In ACM

SIGPLAN Notices. ACM.
John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Correctness of Reactive Systems using Sized Types. In POPL.

ACM.
Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012. Understanding and Detecting Real-world

Performance Bugs. ACM SIGPLAN Notices (2012).
Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. 2010. Static Determination of Quantitative

Resource Usage for Higher-order Programs. In ACM Sigplan Notices. ACM.
Steffen Jost, Pedro Vasconcelos, Mário Florido, and Kevin Hammond. 2017. Type-based Cost Analysis for Lazy Functional

Languages. Journal of Automated Reasoning (2017).
Jay McCarthy, Burke Fetscher, Max S. New, Daniel Feltey, and Robert Findler. 2017. A Coq Library for Internal Verification

of Running-times. Science of Computer Programming (2017).
A. K. Moran and David Sands. 1999. Improvement in a Lazy Context: An Operational Theory for Call-By-Need. In POPL.
Chris Okasaki. 1999. Purely Functional Data Structures. Cambridge University Press.
Ivan Radiček, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian Zuleger. 2017. Monadic Refinements for Relational

Cost Analysis. PACMPL POPL (2017).
David Sands. 1995. Total Correctness by Local Improvement in Program Transformation. In POPL. ACM.
Pedro B Vasconcelos. 2008. Space Cost Analysis using Sized Types. Ph.D. Dissertation. University of St. Andrews.
Pedro B Vasconcelos and Kevin Hammond. 2003. Inferring Cost Equations for Recursive, Polymorphic and Higher-order

Functional Programs. In IFL. Springer.
Niki Vazou. 2016. Liquid Haskell: Haskell as a Theorem Prover. Ph.D. Dissertation. UC San Diego.
Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and Graham Hutton. 2018. Theorem Proving For All: Equational

Reasoning in Liquid Haskell. In Haskell Symposium.
Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. 2013. Abstract Refinement Types. In ESOP. Springer-Verlag.
Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement Types for Haskell.

In ICFP. ACM.
Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G Scott, Ryan R Newton, Philip Wadler, and Ranjit Jhala. 2017.

Refinement Reflection: Complete Verification with SMT. POPL (2017).
Peng Wang, Di Wang, and Adam Chlipala. 2017. TiML: A Functional Language for Practical Complexity Analysis with

Invariants. OOPSLA (2017).

, Vol. 1, No. 1, Article . Publication date: March 2019.

https://github.com/mathandley/RTick
https://github.com/mathandley/RTick

	Abstract
	1 Introduction
	2 Analysing resource usage
	2.1 Intrinsic cost analysis
	2.2 Extrinsic cost analysis
	2.3 Interpreting cost analysis

	3 Implementation
	3.1 Recording resource usage
	3.2 Modifying resource usage
	3.3 Manual proofs about resource usage
	3.4 Library assumptions

	4 Evaluation
	4.1 Insertion sort
	4.2 Non-strict insertion sort
	4.3 Optimised-by-construction reverse
	4.4 Summary of examples

	5 Theory
	5.1 Metatheory of Liquid Haskell
	5.2 Soundness of cost analysis

	6 Related work
	7 Conclusion and further work
	References

