
Generalized	Newtype	Compiling: 
Don't	let	your	types	slow	you	down!

Richard	A.	Eisenberg	
Bryn	Mawr	College	

rae@cs.brynmawr.edu

IFIP	WG2.8	
May	2019	

Bordeaux,	France
�1



The	Problem

Types	help	me	reason.  
😀

Types	can	slow	my	code	down.  
☹

�2



The	Problem

data	Nat	where	
		Zero	::	Nat		
		Succ	::	Nat	!	Nat

• Simple,	user- 
defined	datatype	

• Easy	reasoning	
• Easy	algorithms	
• Easy	induction	
• Patently	ridiculous

strict�
types�
only!

!

number�stored�
as�a�linked�list

�3



The	Problem
data	Fin	::	Nat	!	Type	where	
		FZ	::	Fin	(Succ	n)	
		FS	::	Fin	n	!	Fin	(Succ	n)

• Simple(ish),	user-  
defined	datatype	

• Easy	reasoning	
• Easy	algorithms	
• Easy	induction	
• Patently	ridiculous

�4



The	Problem
data	Vec	::	Type	!	Nat	!	Type	where	
		Nil		::	Vec	a	Zero		
		(:>)	::	a	!	Vec	a	n	!	Vec	a	(Succ	n)

• Simple(ish),	user-  
defined	datatype	

• Easy	reasoning	
• Easy	algorithms	
• Easy	induction	
• Not	always	best  
representation use�an�array!

�5



The	Solution

Separate	compile-time	type	
from	runtime	representation	

�6



Warning:	work	in	progress

Suggestions	welcome!

�7



Collaborative	work  
with	undergrad  
My	Nguyen	'20

(You	want	her	as	a	PhD	student!)
�8



Running	example:	Nat
data	Nat	=	Z	|	S	!Nat	
{-#	TYPECHANGE	
				Nat		<->	Int	
				Z				<->	0	
				S					->	(1+)	
				S	n		<-		(isSucc	!	Just	n)	
				plus	<->	(+)	
	#-}	
isSucc	::	Int	!	Maybe	Int	
isSucc	0	=	Nothing	
isSucc	n	=	Just	(n-1)

view�pattern

�9



Running	example:	Nat
mul	::	Nat	!	Nat	!	Nat	
mul	Z					_	=	Z	
mul	(S	n)	m	=	plus	m	(mul	n	m)

mul	::	Int	!	Int	!	Int	
mul	0	_	=	0	
mul	(isSucc	!	Just	n)	m	
		=	(+)	m	(mul	n	m)

cmul�should�be�
in�TYPECHANGE

�10



Compilation	is	well-typed

c	lifts	TYPECHANGE	into	the	AST

Theorem:	
If	∅	⊢	e	:	τ,	then	∅	⊢	c(e)	:	c(τ)

Generalizes�to�non-
empty�contexts,�too.

TYPECHANGE�must�
be�well-formed

�11



Compilation	respects	semantics

Theorem:	
If	e	⟶*	v,	then	c(e)	⟶*	c(v)

Counterexample:
pred	(S	(S	Z))	⟶*	S	Z

(λx	!	x	-	1)	((1+)	((1+)	0))	
																						⟶*	(1+)	0

�12



Compilation	respects	semantics

Theorem:	
If	e	⟶*	v,	then 

∃	v'	s.t.	c(e)	⟶*	v'	and	c(v)	⟶*	v'

Unhelpful:
True	if	c(e)	=	⊤

�13



Compilation	respects	semantics

Theorem:	
If	e	⟶*	v,	then	

c(e)	⟶*	v'	and	d(v')	⟶*	v

Counterexample:

c(S)	⟶*	(1+)

d((1+))	⟶*	plus	(S	Z)

d�undoes�a�
TYPECHANGE

�14



Compilation	respects	semantics

Theorem:	
If	e	⟶*	v,	then	

c(e)	⟶*	v'	and	d(v')	⟶*	v'' 
where	v	≅	v''.

observational�
equivalence

User	is	responsible	for	this	for	
elements	in	TYPECHANGE.

�15



Compilation	respects	semantics

Theorem:	
If	e	⟶*	v,	then	

c(e)	⟶*	v'	and	d(v')	⟶*	v'' 
where	v	≅	v''.

User	is	responsible	for	this	for	
elements	in	TYPECHANGE.
In�Haskell, 
just�trust. 
(or�QuickCheck)

In�Coq/Agda/
Idris/F*,�
prove.

�16



Observation:	
generalized	newtypes

A	Haskell	newtype	is	
just	a	datatype	with	a	

TYPECHANGE.

�17

NB:�Haskell's�
newtypes�are�
already�strict.



Observation:	patterns
data	Nat	=	Z	|	S	!Nat	
{-#	TYPECHANGE	
				Nat		<->	Int	
				Z				<->	0	
				S					->	(1+)	
				S	n		<-		(isSucc	!	Just	n)	
				plus	<->	(+)	
	#-}

Translating	a	pattern	is	like	
detranslating	an	expression.

�18



Design	consideration:  
strictness

• Lazy	Nat	includes	infinity.	This	is	
inconvenient.	

• Translation	will	not	preserve	laziness	
properties.	

• Need	induction	to	prove	logical	equivalence.

�19



Design	consideration:	modularity

TYPECHANGE	must	be	in	
defining	module	for	a	type.
• Avoids	doing	translation	at	runtime	
• Avoids	lifting	translations	through	
Functor,	Contravariant,	
Bifunctor,	etc.	

• Restriction	could	be	lifted,	if	
necessary

�20



Design	consideration:	
dependent	types

• Need	compile-time	type	to	be	different	from	
runtime	type	

• Need	compile-time	type	to	be	in	"lock-step"	
with	runtime	type

Answer:	singletons!

�21



Design	consideration:	
dependent	types

• Compile-time	performance	still	slow	
• But	nice	reasoning	principles	of	compile-
time	types	are	retained	

• Worst	practical	aspect	of	singletons	is	
runtime	conversions:	these	are	gone	here.

Answer:	singletons!

�22



Design	consideration:	
indexed	types

data	Fin	::	Nat	!	Type	where	
		FZ	::	Fin	(Succ	n)	
		FS	::	Fin	n	!	Fin	(Succ	n)

• How	can	we	have	informative	pattern-
matches?	

• Possible	solution:	new	form	of	runtime	
token,	similar	to	coercions	of	equality	

• Possible	solution:	unsafeCoerce 
Target	language	is	less	richly-typed. 
NB:	GHC	already	drops	newtype	distinctions. �23



Design	consideration:	roles
type	family	F	a	where 
		F	Nat	=	Bool 
		F	Int	=	Char

• Disaster	if	we	confuse	Nat	and	Int.	
• Solution:	roles.	
• Well-studied:	

• Weirich	et	al.,	POPL'11	
• Breitner	et	al.,	JFP'16	
• Weirich	et	al.,	ICFP'19

�24



Design	consideration:  
when	to	optimize

• Both	linked	lists	and	arrays	are	sensible	
representations	for	Vec	a	n.	

• Use	Haskell's	newtype	feature	to	select	the	
representation	in	a	type-directed	way.

�25



Existing	approaches

• Module	swapping:	Have	a	X.Y.Z.Safe	
export	and	a	X.Y.Z.Unsafe	export	with	
the	same	semantics	(hopefully!).	
• Done	in,	e.g.,	Galois'	parameterized-utils	
• Trouble	when	using	data	in	types	
(promotion)	

• Pattern	synonyms	
• No	clear	notion	of	logical	equivalence	
• Hard	to	do	in	practice

�26



Related	work

• Refinements	for	Free,	Denes	et	al	
• Brady's	PhD	student	Matusz

�27



Generalized	Newtype	Compiling: 
Don't	let	your	types	slow	you	down!

Richard	A.	Eisenberg	
Bryn	Mawr	College	

rae@cs.brynmawr.edu

IFIP	WG2.8	
May	2019	

Bordeaux,	France
�28


