BRYN MAWR

COLLEGE

i)

Generalized Newtype Compiling:
Don't let your types slow you down!

Richard A. Eisenberg
Bryn Mawr College
rae(@cs.brynmawr.edu

IFIP WG2.8
May 2019
Bordeaux, France

The Problem

Types help me reason.

®

Types can slow my code down.

The Problem

Stvict
tyres
only! .
« Simple, user-
data Nat where defined datatype
7ero :: Nat » Easy reasoning

Succ :: INat » Nat e« Easy algorithms
 Easy induction

 Patently ridiculous

nwuwber Stoved
as a3 linked list

The Problem

data Fin :: Nat » Type where
FZ :: Fin (Succ n)
FS :: Fin n » Fin (Succ n)
 Simple(ish), user-
defined datatype
» Easy reasoning
» Easy algorithms
« Easy induction

» Patently ridiculous

The Problem

data Vec :: Type » Nat -» Type where
Nil :: Vec a Zero

(:>) :: a » Vec a n » Vec a (Succ n)
» Simple(ish), user-
defined datatype
» Easy reasoning
» Easy algorithms
« Easy induction

* Not always best

representation use an avva‘j!

5

The Solution

Separate compile-time type
from runtime representation

Warning: work in progress

Suggestions welcome!

Collaborative work
with undergrad
'20

(You want her as a PhD student!)

Running example: Nat

data Nat = Z | S INat
{-# TYPECHANGE
Nat <-> Int

Z <-> 0
S -> (1+) view pattern
S n <- (isSucc » Just n)
plus <-> (+)

#- }

1sSucc :: Int -» Maybe Int
1sSucc © = Nothing
isSucc n = Just (n-1)

Running example: Nat

mul :: Nat » Nat - Nat
mul Z =/
mul (S n) m = plus m (mul n m)

wul Should be
W TYPECHANGE

mul :: Int » Int » Int

mul 6 =0

mul (isSucc -» Just n) m
= (+) m (mul n m)

10

Compilation is well-typed

c litts TYPECHANGE into the AST

Theorem:
fo~e:1,then @+ c(e): c(T)

Generalizes +0 nown-
ewm?Pty contexts, t00.

TYPECHANGE wust
be well-Sormed

Compilation respects semantics

Theorem:
If e —*v,then c(e) —" c(v)

Counterexample:
pred (S (S Z)) —* S Z
(AX » x - 1) ((1+) ((1+) ©9))

4% (1+) ©

Compilation respects semantics

Theorem:
It e —*v,then
3v's.tc(e) —*v'and ¢(v) —* V'

Unhelpful:
Trueifc(e)=T

Compilation respects semantics

Theorem/- g-wvdoes 3

c(e)y=="v andd(v')—> v
Counterexample:
c(S) —* (1+)
d((1+)) —*plus (S Z)

Compilation respects semantics

Theorem:
If e —* v, then

c(e) —*v'and d(v') —* v"
wherev = v'.

obsevrvational
equivdlence

User is responsible for this for
elements in TYPECHANGE.

15

Compilation respects semantics

Theorem:
If e —* v, then

c(e) —*v'and d(v') —* v"
wherev = V',
User is responsible for this for

elementsin TYPECHANGE.

In Haskell In coc\/Alda/
yust tvust. ldvis/F
(ov Quickcheck) Prove,

16

Observation:
generalized newtypes

A Haskell newtype is
just a datatype with a

TYPECHANGE.
N®: Haskell's

nwewtyyes dve
dlveddy Strict.

Observation: patterns

data Nat = Z | S INat
{-# TYPECHANGE
Nat <-> Int
Z <-> 0
S -> (1+)
S n <- (isSucc » Just n)
plus <-> (+)
#- }

Translating a pattern is like
detranslating an expression.

18

Design consideration:
strictness

* Lazy Nat includes infinity. This is

Inconvenient.

* Translation will not preserve laziness
properties.

* Need induction to prove logical equivalence.

19

Design consideration: modularity

TYPECHANGE must be in
defining module for a type.

* Avoids doing translation at runtime
* Avoids lifting translations through
Functor, Contravariant,

Bifunctor, etc.

e Restriction could be lifted, if
necessary

20

Design consideration:
dependent types

* Need compile-time type to be different from
runtime type

* Need compile-time type to be in "lock-step”
with runtime type

Answer: singletons!

21

Design consideration:
dependent types

Answer: singletons!

» Compile-time performance still slow

 But nice reasoning principles of compile-
time types are retained

» Worst practical aspect of singletons is
runtime conversions: these are gone here.

22

Design consideration:
indexed types

data Fin :: Nat » Type where
FZ :: Fin (Succ n)

FS :: Fin n » Fin (Succ n)
* How can we have informative pattern-

matches?
e Possible solution: new form of runtime

token, similar to coercions of equality
» Possible solution: unsateCoerce

Target language is less richly-typed.
NB: GHC already drops newtype distinctions.

Design consideration: roles

type family F a where
F Nat = Bool
F Int = Char

e Disaster if we confuse Nat and Int.

 Solution: roles.

e Well-studied:
* Weirich et al., POPL"11
e Breitner et al., JFP'16
» Weirich et al., ICFP'19

24

Design consideration:
when to optimize

» Both linked lists and arrays are sensible
representations for Vec a n.

» Use Haskell's newtype feature to select the
representation in a type-directed way.

25

Existing approaches

* Module swapping: Havea X.Y.Z.Safe
exportanda X.Y.Z.Unsafe export with

the same semantics (hopefully!).
* Donein, e.g., Galois' parameterized-utils
» Trouble when using data in types
(promotion)
» Pattern synonyms

» No clear notion of logical equivalence
» Hard to do in practice

26

Related work

« Refinements for Free, Denes et al
* Brady's PhD student Matusz

27

BRYN MAWR

COLLEGE

i)

Generalized Newtype Compiling:
Don't let your types slow you down!

Richard A. Eisenberg
Bryn Mawr College
rae(@cs.brynmawr.edu

IFIP WG2.8
May 2019

Bordeaux, France o8

