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[a] 

The list monad

return a =  [a]

m >>= k  = concat [ k x | x <- m ]



[a] 

The backtracking monad
Cf. SmallCheck, 
Lazy Smallcheck,
LeanCheck,
etc.

(Eliding size parameter)

g1 = [2,3,4]
g2 = \x -> [x^2, x^3, x^4]

g = do x <- g1
y <- g2 x
return (x,y)

[(2,4),(2,8),(2,16),(3,9),(3,27),(3,81),(4,16),(4,64),(4,256)]



StdGen -> a 

The random generation monad

Pseudo-random number source

(Eliding size parameter)

Cf. QuickCheck, 
etc., etc., etc.

return a = \r -> a

m >>= k =
\r0 -> let (r1,r2) = split r0

m'      = k (m r1)
in m' r2



StdGen -> [a] 

A hybrid “random generation + backtracking” monad



StdGen -> [a] 

return a = \r -> [a]

m >>= k =
\r0 -> let (r1,r2) = split r0

aux r [] = []
aux r (a:as) =
let (r1, r2) = split r
in (k a) r1 ++ aux r2 as

in aux r2 (m r1) 



Pure random generation Pure enumeration

Random generation 
with backtracking!

15-20% overhead compared to 
original QuickCheck

All the combinators from both! 

?

plus some interesting new ones…



retry :: Int -> Gen a -> Gen a

retry 0 g = \r -> []
retry n g = \r -> let (r1, r2) = split r

in g r1 ++ retry (n-1) g r2

randomOrder :: (Int, Int) -> Gen Int

takeG :: Int -> Gen a -> Gen a

And a bunch of others…

weightedAllof :: [(Int, Gen a)] -> Gen a



Plan

• When does backtracking help?
• Two case studies
• A little analytical model
• Discussion!



When does 
backtracking help?



1. If g1 is expensive and g2 is 
cheap, we may want to reuse
each result from g1 to generate 
several results from g2

2. If g1 and/or g2 can fail, we may 
want to retry g2 several times 
for each successful result from 
g1



prop :: (A,B) -> Bool

g1 :: Gen A
g2 :: A -> Gen B

g :: Gen (A,B)
g = do

x <- g1
y <- g2 x
return (x,y)

Pure random Hybrid

1. If g1 is expensive and g2 is 
cheap, we may want to reuse
each result from g1 to generate 
several results from g2

2. If g1 and/or g2 can fail, we may 
want to retry g2 several times 
for each successful result from 
g1

prop :: (A,B) -> Bool

g1 :: Gen A
g2 :: A -> Gen B

g :: Gen (A,B)
g = do

x <- g1
y <- retry 42 $ g2 x
return (x,y)



1. If g1 is expensive and g2 is 
cheap, we may want to reuse 
each result from g1 to generate 
several results from g2

2. If g1 and/or g2 can fail, we may 
want to retry g2 several times 
for each successful result from 
g1

prop :: (A,B) -> Bool

g1 :: Gen (Maybe A)
g2 :: A -> Gen (Maybe B)

g :: Gen (Maybe (A,B))
g = do

xo <- g1
case xo of

Nothing -> return Nothing
Just x -> do

yo <- g2 x
case yo of

Nothing -> return Nothing
Just y -> return $ Just (x,y)

Pure random Hybrid
prop :: (A,B) -> Bool

g1 :: Gen A
g2 :: A -> Gen B

g :: Gen (A,B)
g = do

x <- g1
y <- g2 x
return (x,y)



1. If g1 is expensive and g2 is 
cheap, we may want to reuse 
each result from g1 to generate 
several results from g2

2. If g1 and/or g2 can fail, we may 
want to retry g2 several times 
for each successful result from 
g1

prop :: (A,B) -> Bool

g1 :: Gen (Maybe A)
g2 :: A -> Gen (Maybe B)

g :: Gen (Maybe (A,B))
g = do

xo <- g1
case xo of

Nothing -> return Nothing
Just x -> do

yo <- g2 x
case yo of

Nothing -> return Nothing
Just y -> return $ Just (x,y)

Pure random Hybrid
prop :: (A,B) -> Bool

g1 :: Gen A
g2 :: A -> Gen B

g :: Gen (A,B)
g = do

x <- g1
y <- retry 42 $ g2 x
return (x,y)



Case studies



Case Study: Red-Black Trees

Interesting test case for backtracking 
because purely random generation 
can sometimes get “stuck”…

3

?

?

? ? ?

?

Review: Red-black tree invariants…
- Each node’s label is greater than any in its left 

subtree and less than any in its right subtree
- Root and leaves are black
- Red nodes have black children
- Every path to a leaf has the same number of black 

nodes



genRBT :: Int -> Color -> Int -> Int -> Gen (Maybe (Tree Int))

genRBT 0 R lo hi = return $ Just Empty
genRBT 0 B lo hi 
| hi - lo <= 1 = return $ Just Empty
| otherwise = do

x <- choose (lo + 1 , hi - 1)
elements [Just Empty, Just (Node R x Empty Empty)]

genRBT bh c lo hi
| hi - lo <= 1 = return Nothing
| otherwise = do

x <- choose (lo + 1 , hi - 1)
c' <- if c == R then return B else elements [B, R]
let bh' = if c' == B then bh - 1 else bh
if (not (x - lo >= 2 ^ bh' && hi - x >= 2 ^ bh')) then
return Nothing

else do
ml <- genRBT bh' c' lo x
mr <- genRBT bh' c' x hi
case (ml, mr) of
(Just l, Just r) -> return $ Just $ Node c' x l r
_ -> return Nothing

Issues:
1. Ugly: “Maybe plumbing” all 

over the place
2. Slow: Backtracks all the way 

to the beginning each time!

Original QuickCheck



genRBT :: Int -> Color -> Int -> Int -> Gen (Maybe (Tree Int))

genRBT 0 R lo hi = return $ Just Empty
genRBT 0 B lo hi 
| hi - lo <= 1 = return $ Just Empty
| otherwise = do

x <- choose (lo + 1 , hi - 1)
elements [Just Empty, Just (Node R x Empty Empty)]

genRBT bh c lo hi
| hi - lo <= 1 = return Nothing
| otherwise = do

x <- choose (lo + 1 , hi - 1)
c' <- if c == R then return B else elements [B, R]
let bh' = if c' == B then bh - 1 else bh
if (not (x - lo >= 2 ^ bh' && hi - x >= 2 ^ bh')) then
return Nothing

else do
ml <- genRBT bh' c' lo x
mr <- genRBT bh' c' x hi
case (ml, mr) of
(Just l, Just r) -> return $ Just $ Node c' x l r
_ -> return Nothing

genRBT :: Color -> Int -> Int -> Gen (Tree Int)

genRBT R lo hi = return Empty
genRBT B lo hi 
| hi - lo <= 1 = return Empty
| otherwise = do

x <- choose (lo + 1 , hi - 1)
elements [Empty, Node R x Empty Empty]

genRBT f bh c lo hi
| hi - lo <= 1 = empty 
| otherwise = do

x <- choose (lo + 1, hi - 1)
c' <- if c == R then return B else elements [B, R]
let bh' = if c' == B then bh - 1 else bh
guard (x - lo >= 2 ^ bh')
guard (hi - x >= 2 ^ bh') 
l <- genRBT f bh' c' lo x
r <- genRBT f bh' c' x hi
return $ Node c' x l r

Original QuickCheck Hybrid



genRBT :: Int -> Color -> Int -> Int -> Gen (Maybe (Tree Int))

genRBT 0 R lo hi = return $ Just Empty
genRBT 0 B lo hi 
| hi - lo <= 1 = return $ Just Empty
| otherwise = do

x <- choose (lo + 1 , hi - 1)
elements [Just Empty, Just (Node R x Empty Empty)]

genRBT bh c lo hi
| hi - lo <= 1 = return Nothing
| otherwise = do

x <- choose (lo + 1 , hi - 1)
c' <- if c == R then return B else elements [B, R]
let bh' = if c' == B then bh - 1 else bh
if (not (x - lo >= 2 ^ bh' && hi - x >= 2 ^ bh')) then
return Nothing

else do
ml <- genRBT bh' c' lo x
mr <- genRBT bh' c' x hi
case (ml, mr) of
(Just l, Just r) -> return $ Just $ Node c' x l r
_ -> return Nothing

genRBT :: Color -> Int -> Int -> Gen (Tree Int)

genRBT R lo hi = return $ Empty
genRBT B lo hi 
| hi - lo <= 1 = return Empty
| otherwise = do

x <- choose (lo + 1 , hi - 1)
elements [Empty, Node R x Empty Empty]

genRBT f bh c lo hi
| hi - lo <= 1 = empty 
| otherwise = do

x <- randomOrder (lo + 1, hi - 1)
c' <- if c == R then return B else elements [B, R]
let bh' = if c' == B then bh - 1 else bh
guard (x - lo >= 2 ^ bh')
guard (hi - x >= 2 ^ bh') 
l <- genRBT f bh' c' lo x
r <- genRBT f bh' c' x hi
return $ Node c' x l r

Original QuickCheck Hybrid



Time to generate red-black trees of
various heights with labels in {1..2^8}



Criticisms

• Constrained range of labels
• But: look… 

• Hybrid monad helps only for large-
ish black heights
• But: random testing experts tell us to 

generate structures much larger than 
the minimal counterexample

• We already know how to generate 
random red-black trees
• Generate a random list and insert its 

elements into a tree one by one
• But: Can all well-formed red-black 

trees be generated in this way?

Time to generate red-black
trees of various heights with
labels in {1..2^18}

A more realistic example…



Case Study: IFC
• Setup

• A tiny RISC instruction set with built-in dynamic information-flow monitoring
• Correctness property: Noninterference

• “Secret data does not flow to publicly accessible locations”
• I.e. Low-indistinguishable states remain low-indistinguishable after the machine steps

• Experimental procedure
• Systematically inject bugs into the IFC monitor
• Generate pairs of initial machine states with identical public parts 

• For each, step the machine by executing the instruction at the current PC and check whether 
the resulting machine states still have identical public parts

• For each injected bug, measure how long it takes to find a pair of machine states that 
demonstrate it

• Compare MTTF for two generation strategies…



Original gen_states :: Gen (Machine, Machine) 
gen_states = do

m1_init <- gen_machine
m2_init <- gen_indist m1_init 
instr <- gen_valid_instr m1_init
m1 <- store_instr m1_init instr
m2 <- store_instr m2_init instr
return  (m1, m2)

Nb.: This is “Haskell pseudocode.”  Actual 
implementation is in Coq using QuickChick.



Original gen_states :: Gen (Machine, Machine) 
gen_states = do

m1_init <- gen_machine
m2_init <- gen_indist m1_init 
instr <- gen_valid_instr m1_init
m1 <- store_instr m1_init instr
m2 <- store_instr m2_init instr
return  (m1, m2)

gen_states = 
m1_init <- gen_machine
m2_init <- gen_indist m1_init 
instr <- enum_valid_instr m1_init
m1 <- store_instr m1_init instr
m2 <- store_instr m2_init instr
return (m1, m2)

With 
backtracking
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Collection of systematically injected bugs 
(ordered “easiest to hardest”)

4x average 
speedup(pure enumeration is hopeless)



A (simplified) analytical 
model



• Setup
• Generate pairs (x,y), where generating y depends on x
• Some pairs are red -- goal is to find one 
• For each x, assume that 

• either no (x,y) pairs are red (and we say x itself is black)
• or else some (x,y) pair is red (and we say x is red)

• Each x is red with 50% probability
• When x is red, each (x,y) pair is red with equal probability

• Parameters
• ratio between cost of generating an x and cost of generating a y
• density of red ys (given a red x)

• Output
• Optimal number of ys to generate for each generated x, to minimize 

expected time to generate a red (x,y)





Discussion

We’d love to have more real-world examples!



Gory details



Review

newtype Gen a = Gen { run :: Int -> StdGen -> a }

instance Monad Gen where
return a    = Gen (\n r -> a)
Gen m >>= k =
Gen (\n r0 -> let (r1,r2) = split r0

Gen m'  = k (m n r1)
in m' n r2)

choose :: Random a => (a, a) -> Gen a

frequency :: [(Int, Gen a)] -> Gen a

suchThatMaybe :: Gen a -> (a -> Bool) -> Gen (Maybe a)

newtype Gen a = Gen { run :: Int -> [a] }

instance Monad Gen where
return a    = Gen (\n -> [a])
Gen m >>= k =
Gen (\n -> do x <- m n

run (k x) n)

enumerate :: [a] -> Gen a 

allof :: [Gen a] -> Gen a

empty :: Gen a

The Random Generation Monad
Gen a = Int -> StdGen -> a

The Enumeration Monad
Gen a = Int -> [a]

Failure!

aka msum
(nb: no weights!)



The Hybrid Monad

newtype Gen a = Gen { run :: Int -> StdGen -> [a] }

frequency :: [(Int, Gen a)] -> Gen a
allof :: [Gen a] -> Gen a

choose :: Random a => (a, a) -> Gen a
enumerate :: [a] -> Gen a 

suchThatMaybe :: Gen a -> (a -> Bool) -> Gen (Maybe a)
empty :: Gen a

weightedAllof :: [(Int, Gen a)] -> Gen a

randomOrder :: Random a => (a, a) -> Gen a

filterG :: (a -> Bool) -> Gen a -> Gen a

= frequency + 
allof

= 
suchThatMaybe

- Maybe

= choose + 
enumerate

Gen a  =  Int -> StdGen -> [a] 


